BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17178710)

  • 1. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
    Wang W; Bernard K; Li G; Kirk KL
    J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electrostatic interaction at the tetrahelix bundle promotes phosphorylation-dependent cystic fibrosis transmembrane conductance regulator (CFTR) channel opening.
    Wang W; Roessler BC; Kirk KL
    J Biol Chem; 2014 Oct; 289(44):30364-30378. PubMed ID: 25190805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-independent CFTR channel gating and allosteric modulation by phosphorylation.
    Wang W; Wu J; Bernard K; Li G; Wang G; Bevensee MO; Kirk KL
    Proc Natl Acad Sci U S A; 2010 Feb; 107(8):3888-93. PubMed ID: 20133716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
    Okeyo G; Wang W; Wei S; Kirk KL
    J Biol Chem; 2013 Jun; 288(24):17122-33. PubMed ID: 23620589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations.
    Wang W; Fu L; Liu Z; Wen H; Rab A; Hong JS; Kirk KL; Rowe SM
    Am J Physiol Lung Cell Mol Physiol; 2020 Nov; 319(5):L770-L785. PubMed ID: 32877225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cluster of negative charges at the amino terminal tail of CFTR regulates ATP-dependent channel gating.
    Fu J; Ji HL; Naren AP; Kirk KL
    J Physiol; 2001 Oct; 536(Pt 2):459-70. PubMed ID: 11600681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.
    Wei S; Roessler BC; Chauvet S; Guo J; Hartman JL; Kirk KL
    J Biol Chem; 2014 Jul; 289(29):19942-57. PubMed ID: 24876383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer.
    Mense M; Vergani P; White DM; Altberg G; Nairn AC; Gadsby DC
    EMBO J; 2006 Oct; 25(20):4728-39. PubMed ID: 17036051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the degenerated interfacial ATP binding site improves the function of disease-related mutant cystic fibrosis transmembrane conductance regulator (CFTR) channels.
    Tsai MF; Jih KY; Shimizu H; Li M; Hwang TC
    J Biol Chem; 2010 Nov; 285(48):37663-71. PubMed ID: 20861014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
    Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels.
    Wei S; Roessler BC; Icyuz M; Chauvet S; Tao B; Hartman JL; Kirk KL
    FASEB J; 2016 Mar; 30(3):1247-62. PubMed ID: 26606940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.