BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17179184)

  • 1. Perianth bottom-specific blue color development in Tulip cv. Murasakizuisho requires ferric ions.
    Shoji K; Miki N; Nakajima N; Momonoi K; Kato C; Yoshida K
    Plant Cell Physiol; 2007 Feb; 48(2):243-51. PubMed ID: 17179184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative expression of vacuolar iron transporter and ferritin genes leads to blue/purple coloration of flowers in tulip cv. 'Murasakizuisho'.
    Shoji K; Momonoi K; Tsuji T
    Plant Cell Physiol; 2010 Feb; 51(2):215-24. PubMed ID: 20022978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A vacuolar iron transporter in tulip, TgVit1, is responsible for blue coloration in petal cells through iron accumulation.
    Momonoi K; Yoshida K; Mano S; Takahashi H; Nakamori C; Shoji K; Nitta A; Nishimura M
    Plant J; 2009 Aug; 59(3):437-47. PubMed ID: 19366427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specific expression of the vacuolar iron transporter, TgVit, causes iron accumulation in blue-colored inner bottom segments of various tulip petals.
    Momonoi K; Tsuji T; Kazuma K; Yoshida K
    Biosci Biotechnol Biochem; 2012; 76(2):319-25. PubMed ID: 22313773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferric ions involved in the flower color development of the Himalayan blue poppy, Meconopsis grandis.
    Yoshida K; Kitahara S; Ito D; Kondo T
    Phytochemistry; 2006 May; 67(10):992-8. PubMed ID: 16678868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae).
    Saito N; Tatsuzawa F; Toki K; Shinoda K; Shigihara A; Honda T
    Phytochemistry; 2011 Dec; 72(17):2219-29. PubMed ID: 21903230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of anthocyanin from the blue petals of Phacelia campanularia and its blue flower color development.
    Mori M; Kondo T; Toki K; Yoshida K
    Phytochemistry; 2006 Mar; 67(6):622-9. PubMed ID: 16464482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of a vacuolar iron transporter involved in the blue coloration of cornflower petals.
    Yoshida K; Negishi T
    Phytochemistry; 2013 Oct; 94():60-7. PubMed ID: 23838627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sepal color variation of Hydrangea macrophylla and vacuolar pH measured with a proton-selective microelectrode.
    Yoshida K; Toyama-Kato Y; Kameda K; Kondo T
    Plant Cell Physiol; 2003 Mar; 44(3):262-8. PubMed ID: 12668772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of the color of Cv. rhapsody in blue rose and some other so-called "blue" roses.
    Gonnet JF
    J Agric Food Chem; 2003 Aug; 51(17):4990-4. PubMed ID: 12903958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue.
    Yoshida K; Kawachi M; Mori M; Maeshima M; Kondo M; Nishimura M; Kondo T
    Plant Cell Physiol; 2005 Mar; 46(3):407-15. PubMed ID: 15695444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic and linkage analysis of purple-blue flower in soybean.
    Takahashi R; Matsumura H; Oyoo ME; Khan NA
    J Hered; 2008; 99(6):593-7. PubMed ID: 18502733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of flavonoids in flower petals of soybean near-isogenic lines for flower and pubescence color genes.
    Iwashina T; Githiri SM; Benitez ER; Takemura T; Kitajima J; Takahashi R
    J Hered; 2007; 98(3):250-7. PubMed ID: 17420179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin.
    Katsumoto Y; Fukuchi-Mizutani M; Fukui Y; Brugliera F; Holton TA; Karan M; Nakamura N; Yonekura-Sakakibara K; Togami J; Pigeaire A; Tao GQ; Nehra NS; Lu CY; Dyson BK; Tsuda S; Ashikari T; Kusumi T; Mason JG; Tanaka Y
    Plant Cell Physiol; 2007 Nov; 48(11):1589-600. PubMed ID: 17925311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical and biochemical studies of bicolored flower development in Muscari latifolium.
    Qi Y; Lou Q; Li H; Yue J; Liu Y; Wang Y
    Protoplasma; 2013 Dec; 250(6):1273-81. PubMed ID: 23677687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthocyanin composition in black, blue, pink, purple, and red cereal grains.
    Abdel-Aal el-SM; Young JC; Rabalski I
    J Agric Food Chem; 2006 Jun; 54(13):4696-704. PubMed ID: 16787017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change of color and components in sepals of chameleon hydrangea during maturation and senescence.
    Yoshida K; Ito D; Shinkai Y; Kondo T
    Phytochemistry; 2008 Dec; 69(18):3159-65. PubMed ID: 18423783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of violet-blue color formation in Phalaenopsis orchids.
    Liang CY; Rengasamy KP; Huang LM; Hsu CC; Jeng MF; Chen WH; Chen HH
    BMC Plant Biol; 2020 May; 20(1):212. PubMed ID: 32397954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between phenolic compounds, anthocyanins content and antioxidant activity in colored barley germplasm.
    Kim MJ; Hyun JN; Kim JA; Park JC; Kim MY; Kim JG; Lee SJ; Chun SC; Chung IM
    J Agric Food Chem; 2007 Jun; 55(12):4802-9. PubMed ID: 17516656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.
    Buchweitz M; Brauch J; Carle R; Kammerer DR
    Food Chem; 2013 Jun; 138(2-3):2026-35. PubMed ID: 23411339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.