These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
670 related articles for article (PubMed ID: 17179217)
1. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Giresi PG; Kim J; McDaniell RM; Iyer VR; Lieb JD Genome Res; 2007 Jun; 17(6):877-85. PubMed ID: 17179217 [TBL] [Abstract][Full Text] [Related]
2. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Giresi PG; Lieb JD Methods; 2009 Jul; 48(3):233-9. PubMed ID: 19303047 [TBL] [Abstract][Full Text] [Related]
3. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Simon JM; Giresi PG; Davis IJ; Lieb JD Nat Protoc; 2012 Jan; 7(2):256-67. PubMed ID: 22262007 [TBL] [Abstract][Full Text] [Related]
5. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq). Bianco S; Rodrigue S; Murphy BD; Gévry N Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156 [TBL] [Abstract][Full Text] [Related]
6. A detailed protocol for formaldehyde-assisted isolation of regulatory elements (FAIRE). Simon JM; Giresi PG; Davis IJ; Lieb JD Curr Protoc Mol Biol; 2013; Chapter 21():Unit21.26. PubMed ID: 23547014 [TBL] [Abstract][Full Text] [Related]
7. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Song L; Zhang Z; Grasfeder LL; Boyle AP; Giresi PG; Lee BK; Sheffield NC; Gräf S; Huss M; Keefe D; Liu Z; London D; McDaniell RM; Shibata Y; Showers KA; Simon JM; Vales T; Wang T; Winter D; Zhang Z; Clarke ND; Birney E; Iyer VR; Crawford GE; Lieb JD; Furey TS Genome Res; 2011 Oct; 21(10):1757-67. PubMed ID: 21750106 [TBL] [Abstract][Full Text] [Related]
8. Mapping open chromatin with formaldehyde-assisted isolation of regulatory elements. Nammo T; Rodríguez-Seguí SA; Ferrer J Methods Mol Biol; 2011; 791():287-96. PubMed ID: 21913087 [TBL] [Abstract][Full Text] [Related]
9. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana. Omidbakhshfard MA; Winck FV; Arvidsson S; Riaño-Pachón DM; Mueller-Roeber B J Integr Plant Biol; 2014 Jun; 56(6):527-38. PubMed ID: 24373132 [TBL] [Abstract][Full Text] [Related]
10. Formaldehyde-assisted isolation of regulatory DNA elements from Arabidopsis leaves. Baum S; Reimer-Michalski EM; Jaskiewicz MR; Conrath U Nat Protoc; 2020 Mar; 15(3):713-733. PubMed ID: 32042178 [TBL] [Abstract][Full Text] [Related]
11. Isolation and analysis of DNA derived from nucleosome-free regions. Murtha M; Wang Y; Basilico C; Dailey L Methods Mol Biol; 2013; 977():35-51. PubMed ID: 23436352 [TBL] [Abstract][Full Text] [Related]
12. Formaldehyde-assisted Isolation of Regulatory Elements to Measure Chromatin Accessibility in Mammalian Cells. Rodríguez-Gil A; Riedlinger T; Ritter O; Saul VV; Schmitz ML J Vis Exp; 2018 Apr; (134):. PubMed ID: 29658938 [TBL] [Abstract][Full Text] [Related]
13. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. De Cecco M; Criscione SW; Peckham EJ; Hillenmeyer S; Hamm EA; Manivannan J; Peterson AL; Kreiling JA; Neretti N; Sedivy JM Aging Cell; 2013 Apr; 12(2):247-56. PubMed ID: 23360310 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Sabo PJ; Humbert R; Hawrylycz M; Wallace JC; Dorschner MO; McArthur M; Stamatoyannopoulos JA Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4537-42. PubMed ID: 15070753 [TBL] [Abstract][Full Text] [Related]
15. Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) analysis uncovers broad changes in chromatin structure resulting from hexavalent chromium exposure. Ovesen JL; Fan Y; Zhang X; Chen J; Medvedovic M; Xia Y; Puga A PLoS One; 2014; 9(5):e97849. PubMed ID: 24837440 [TBL] [Abstract][Full Text] [Related]
16. Using Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) to Identify Functional Regulatory DNA in Insect Genomes. McKay DJ Methods Mol Biol; 2019; 1858():89-97. PubMed ID: 30414113 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Chromatin Structure-associated Histone Modifications in Breast Cancer Cells. Hong CP; Choe MK; Roh TY Genomics Inform; 2012 Sep; 10(3):145-52. PubMed ID: 23166525 [TBL] [Abstract][Full Text] [Related]
18. A map of open chromatin in human pancreatic islets. Gaulton KJ; Nammo T; Pasquali L; Simon JM; Giresi PG; Fogarty MP; Panhuis TM; Mieczkowski P; Secchi A; Bosco D; Berney T; Montanya E; Mohlke KL; Lieb JD; Ferrer J Nat Genet; 2010 Mar; 42(3):255-9. PubMed ID: 20118932 [TBL] [Abstract][Full Text] [Related]
19. A novel method to predict regulatory regions based on histone mark landscapes in macrophages. Nagy G; Dániel B; Jónás D; Nagy L; Barta E Immunobiology; 2013 Nov; 218(11):1416-27. PubMed ID: 23973299 [TBL] [Abstract][Full Text] [Related]
20. [Nucleosome remodeling on the regulatory region of the rat tryptophan dioxygenase (tdo) gene during transcription in vivo]. Chikhirzhina GI; Nazarova NIu; Chikhirzhina EV; Romanovskaia EV Tsitologiia; 2010; 52(6):459-65. PubMed ID: 20737904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]