These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17179936)

  • 1. MRI-based localization of electrophysiological recording sites within the cerebral cortex at single-voxel accuracy.
    Matsui T; Koyano KW; Koyama M; Nakahara K; Takeda M; Ohashi Y; Naya Y; Miyashita Y
    Nat Methods; 2007 Feb; 4(2):161-8. PubMed ID: 17179936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo visualization of single-unit recording sites using MRI-detectable elgiloy deposit marking.
    Koyano KW; Machino A; Takeda M; Matsui T; Fujimichi R; Ohashi Y; Miyashita Y
    J Neurophysiol; 2011 Mar; 105(3):1380-92. PubMed ID: 21123662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution three-dimensional microelectrode brain mapping using stereo microfocal X-ray imaging.
    Cox DD; Papanastassiou AM; Oreper D; Andken BB; Dicarlo JJ
    J Neurophysiol; 2008 Nov; 100(5):2966-76. PubMed ID: 18815345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast, model-independent method for cerebral cortical thickness estimation using MRI.
    Scott ML; Bromiley PA; Thacker NA; Hutchinson CE; Jackson A
    Med Image Anal; 2009 Apr; 13(2):269-85. PubMed ID: 19068276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous two-voxel localized (1)H-observed (13)C-edited spectroscopy for in vivo MRS on rat brain at 9.4T: Application to the investigation of excitotoxic lesions.
    Doan BT; Autret G; Mispelter J; Méric P; Même W; Montécot-Dubourg C; Corrèze JL; Szeremeta F; Gillet B; Beloeil JC
    J Magn Reson; 2009 May; 198(1):94-104. PubMed ID: 19289293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compatibility of glass-guided recording microelectrodes in the brain stem of squirrel monkeys with high-resolution 3D MRI.
    Tammer R; Ehrenreich L; Boretius S; Watanabe T; Frahm J; Michaelis T
    J Neurosci Methods; 2006 Jun; 153(2):221-9. PubMed ID: 16343640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo microelectrode localization in the brain of the alert monkey: a combined radiographic and magnetic resonance imaging approach.
    Nahm FK; Dale AM; Albright TD; Amaral DG
    Exp Brain Res; 1994; 98(3):401-11. PubMed ID: 8056063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models.
    Lee C; Lodwick D; Hasenauer D; Williams JL; Lee C; Bolch WE
    Phys Med Biol; 2007 Jun; 52(12):3309-33. PubMed ID: 17664546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Massively parallel recording of unit and local field potentials with silicon-based electrodes.
    Csicsvari J; Henze DA; Jamieson B; Harris KD; Sirota A; Barthó P; Wise KD; Buzsáki G
    J Neurophysiol; 2003 Aug; 90(2):1314-23. PubMed ID: 12904510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative comparison of two cortical surface extraction methods using MRI phantoms.
    Eskildsen SF; Ostergaard LR
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):409-16. PubMed ID: 18051085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for localizing microelectrode trajectories in the macaque brain using MRI.
    Kalwani RM; Bloy L; Elliott MA; Gold JI
    J Neurosci Methods; 2009 Jan; 176(2):104-11. PubMed ID: 18831988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Method of microelectrode scanning of the cerebral cortex].
    Chebkasov SA
    Fiziol Zh SSSR Im I M Sechenova; 1981 Dec; 67(12):1886-90. PubMed ID: 7333384
    [No Abstract]   [Full Text] [Related]  

  • 15. Correlation of the macrogram and the microgram of the penicillin focus in turtle (Testudo) cerebral cortex. Localization of the capillary microelectrode tip with Pontamine Sky Blue 6BX.
    Strejcková A; Fischer J; Malík V
    Physiol Bohemoslov; 1979; 28(5):419-23. PubMed ID: 92796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic curvilinear reformatting of three-dimensional MRI data of the cerebral cortex.
    Huppertz HJ; Kassubek J; Altenmüller DM; Breyer T; Fauser S
    Neuroimage; 2008 Jan; 39(1):80-6. PubMed ID: 17928236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporally precise cortical firing patterns are associated with distinct action segments.
    Shmiel T; Drori R; Shmiel O; Ben-Shaul Y; Nadasdy Z; Shemesh M; Teicher M; Abeles M
    J Neurophysiol; 2006 Nov; 96(5):2645-52. PubMed ID: 16885517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural traffic as voxel-based measure of cerebral functional connectivity in fMRI.
    Beu M; Baudrexel S; Hautzel H; Antke C; Mueller HW
    J Neurosci Methods; 2009 Jan; 176(2):263-9. PubMed ID: 18834906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Connectivity between cortex and basal ganglia revealed by the diffusion-weighted imaging].
    Hayashi T
    Rinsho Shinkeigaku; 2007 Nov; 47(11):838-40. PubMed ID: 18210812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo microelectrode track reconstruction using magnetic resonance imaging.
    Fung SH; Burstein D; Born RT
    J Neurosci Methods; 1998 Apr; 80(2):215-24. PubMed ID: 9667395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.