These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 17179936)

  • 21. Spatial correspondence between functional MRI (fMRI) activations and cortical current density maps of event-related potentials (ERP): a study with four tasks.
    Minati L; Rosazza C; Zucca I; D'Incerti L; Scaioli V; Bruzzone MG
    Brain Topogr; 2008 Dec; 21(2):112-27. PubMed ID: 18758934
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recording chronically from the same neurons in awake, behaving primates.
    Tolias AS; Ecker AS; Siapas AG; Hoenselaar A; Keliris GA; Logothetis NK
    J Neurophysiol; 2007 Dec; 98(6):3780-90. PubMed ID: 17942615
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BOLD sensitivity to cortical activation induced by microstimulation: comparison to visual stimulation.
    Sultan F; Augath M; Logothetis N
    Magn Reson Imaging; 2007 Jul; 25(6):754-9. PubMed ID: 17482409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A glass-coated tungsten microelectrode enclosing optical fibers for optogenetic exploration in primate deep brain structures.
    Tamura K; Ohashi Y; Tsubota T; Takeuchi D; Hirabayashi T; Yaguchi M; Matsuyama M; Sekine T; Miyashita Y
    J Neurosci Methods; 2012 Oct; 211(1):49-57. PubMed ID: 22971353
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voxel-based iterative sensitivity (VBIS) analysis: methods and a validation of intensity scaling for T2-weighted imaging of hippocampal sclerosis.
    Abbott DF; Pell GS; Pardoe H; Jackson GD
    Neuroimage; 2009 Feb; 44(3):812-9. PubMed ID: 18996207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry.
    Bermudez P; Lerch JP; Evans AC; Zatorre RJ
    Cereb Cortex; 2009 Jul; 19(7):1583-96. PubMed ID: 19073623
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia.
    Huppertz HJ; Wellmer J; Staack AM; Altenmüller DM; Urbach H; Kröll J
    Epilepsia; 2008 May; 49(5):772-85. PubMed ID: 18047585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VSDI: a new era in functional imaging of cortical dynamics.
    Grinvald A; Hildesheim R
    Nat Rev Neurosci; 2004 Nov; 5(11):874-85. PubMed ID: 15496865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frameless stereotaxy in the nonhuman primate.
    Frey S; Comeau R; Hynes B; Mackey S; Petrides M
    Neuroimage; 2004 Nov; 23(3):1226-34. PubMed ID: 15528122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recording for several days from single cortical neurones in the unrestrained cat.
    Burns BD; Stean JP; Webb AC
    J Physiol; 1973 May; 231(1):8P-10P. PubMed ID: 4715373
    [No Abstract]   [Full Text] [Related]  

  • 32. Direct and indirect activation of cortical neurons by electrical microstimulation.
    Tehovnik EJ; Tolias AS; Sultan F; Slocum WM; Logothetis NK
    J Neurophysiol; 2006 Aug; 96(2):512-21. PubMed ID: 16835359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cortical grey matter alterations in idiopathic restless legs syndrome: An optimized voxel-based morphometry study.
    Unrath A; Juengling FD; Schork M; Kassubek J
    Mov Disord; 2007 Sep; 22(12):1751-6. PubMed ID: 17566123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subthalamic nucleus stimulation in Parkinson's disease: postoperative CT-MRI fusion images confirm accuracy of electrode placement using intraoperative multi-unit recording.
    Shin M; Lefaucheur JP; Penholate MF; Brugières P; Gurruchaga JM; Nguyen JP
    Neurophysiol Clin; 2007 Dec; 37(6):457-66. PubMed ID: 18083502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T.
    Marques JP; Maddage R; Mlynarik V; Gruetter R
    Neuroimage; 2009 Jun; 46(2):345-52. PubMed ID: 19254768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Projection of fMRI data onto the cortical surface using anatomically-informed convolution kernels.
    Operto G; Bulot R; Anton JL; Coulon O
    Neuroimage; 2008 Jan; 39(1):127-35. PubMed ID: 17931891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MRI of cellular layers in mouse brain in vivo.
    Boretius S; Kasper L; Tammer R; Michaelis T; Frahm J
    Neuroimage; 2009 Oct; 47(4):1252-60. PubMed ID: 19520174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A practical approach to in vivo high-resolution diffusion tensor imaging of rhesus monkeys on a 3-T human scanner.
    Liu X; Zhu T; Gu T; Zhong J
    Magn Reson Imaging; 2009 Apr; 27(3):335-46. PubMed ID: 18768280
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.
    Zhang S; Song Y; Wang M; Zhang Z; Fan X; Song X; Zhuang P; Yue F; Chan P; Cai X
    Biosens Bioelectron; 2016 Nov; 85():53-61. PubMed ID: 27155116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic MRI of small electrical activity.
    Song AW; Truong TK; Woldorff M
    Methods Mol Biol; 2009; 489():297-315. PubMed ID: 18839098
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.