These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17180207)

  • 1. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E; Enger J; Nordlander B; Erjavec N; Ramser K; Goksör M; Hohmann S; Nyström T; Hanstorp D
    Lab Chip; 2007 Jan; 7(1):71-6. PubMed ID: 17180207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning.
    Eriksson E; Sott K; Lundqvist F; Sveningsson M; Scrimgeour J; Hanstorp D; Goksör M; Granéli A
    Lab Chip; 2010 Mar; 10(5):617-25. PubMed ID: 20162237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical tweezers applied to a microfluidic system.
    Enger J; Goksör M; Ramser K; Hagberg P; Hanstorp D
    Lab Chip; 2004 Jun; 4(3):196-200. PubMed ID: 15159778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The combination of optical tweezers and microwell array for cells physical manipulation and localization in microfluidic device.
    Luo C; Li H; Xiong C; Peng X; Kou Q; Chen Y; Ji H; Ouyang Q
    Biomed Microdevices; 2007 Aug; 9(4):573-8. PubMed ID: 17484053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic sorting of arbitrary cells with dynamic optical tweezers.
    Landenberger B; Höfemann H; Wadle S; Rohrbach A
    Lab Chip; 2012 Sep; 12(17):3177-83. PubMed ID: 22767208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment.
    Honarmandi P; Lee H; Lang MJ; Kamm RD
    Lab Chip; 2011 Feb; 11(4):684-94. PubMed ID: 21152510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
    Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M
    Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies.
    Wang X; Chen S; Kong M; Wang Z; Costa KD; Li RA; Sun D
    Lab Chip; 2011 Nov; 11(21):3656-62. PubMed ID: 21918752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC; Hur JY; Cho HS; Park SH; Suh KY
    Lab Chip; 2011 Jan; 11(1):79-86. PubMed ID: 20957290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).
    Lanigan PM; Ninkovic T; Chan K; de Mello AJ; Willison KR; Klug DR; Templer RH; Neil MA; Ces O
    Lab Chip; 2009 Apr; 9(8):1096-101. PubMed ID: 19350091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of cell and particle trapping in microfluidic systems.
    Nilsson J; Evander M; Hammarström B; Laurell T
    Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gentle cell trapping and release on a microfluidic chip by in situ alginate hydrogel formation.
    Braschler T; Johann R; Heule M; Metref L; Renaud P
    Lab Chip; 2005 May; 5(5):553-9. PubMed ID: 15856094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis.
    Shah GJ; Ohta AT; Chiou EP; Wu MC; Kim CJ
    Lab Chip; 2009 Jun; 9(12):1732-9. PubMed ID: 19495457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays.
    Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J
    Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilayer microfluidic chip for diffusion-controlled activation of yeast species.
    Kurth F; Schumann CA; Blank LM; Schmid A; Manz A; Dittrich PS
    J Chromatogr A; 2008 Oct; 1206(1):77-82. PubMed ID: 18701110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studying Glycolytic Oscillations in Individual Yeast Cells by Combining Fluorescence Microscopy with Microfluidics and Optical Tweezers.
    Gustavsson AK; Banaeiyan AA; van Niekerk DD; Snoep JL; Adiels CB; Goksör M
    Curr Protoc Cell Biol; 2019 Mar; 82(1):e70. PubMed ID: 30329225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.