These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17180207)

  • 21. Microfluidic cell counter/sorter utilizing multiple particle tracing technique and optically switching approach.
    Lin CC; Chen A; Lin CH
    Biomed Microdevices; 2008 Feb; 10(1):55-63. PubMed ID: 17659444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices.
    Sung JH; Choi JR; Kim D; Shuler ML
    Biotechnol Bioeng; 2009 Oct; 104(3):516-25. PubMed ID: 19575443
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system.
    Palková Z; Váchová L; Valer M; Preckel T
    Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optically-actuated translational and rotational motion at the microscale for microfluidic manipulation and characterization.
    Mohanty S
    Lab Chip; 2012 Oct; 12(19):3624-36. PubMed ID: 22899251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microfluidic platform for sequential ligand labeling and cell binding analysis.
    Sui G; Lee CC; Kamei K; Li HJ; Wang JY; Wang J; Herschman HR; Tseng HR
    Biomed Microdevices; 2007 Jun; 9(3):301-5. PubMed ID: 17195108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidic diffusion chamber for reversible environmental changes around flaccid lipid vesicles.
    Vrhovec S; Mally M; Kavčič B; Derganc J
    Lab Chip; 2011 Dec; 11(24):4200-6. PubMed ID: 22033516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A rapid microfluidic switching system for analysis at the single cellular level.
    Yamada A; Katanosaka Y; Mohri S; Naruse K
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):306-11. PubMed ID: 20142146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifouling coatings for optoelectronic tweezers.
    Lau AN; Ohta AT; Phan HL; Hsu HY; Jamshidi A; Chiou PY; Wu MC
    Lab Chip; 2009 Oct; 9(20):2952-7. PubMed ID: 19789749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser surgery and optical trapping in a laser scanning microscope.
    Scrimgeour J; Eriksson E; Goksör M
    Methods Cell Biol; 2007; 82():629-46. PubMed ID: 17586274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments.
    Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J
    Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic integrated optoelectronic tweezers for single-cell preparation and analysis.
    Huang KW; Wu YC; Lee JA; Chiou PY
    Lab Chip; 2013 Sep; 13(18):3721-7. PubMed ID: 23884358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A prototype microfluidic chip using fluorescent yeast for detection of toxic compounds.
    García-Alonso J; Greenway GM; Hardege JD; Haswell SJ
    Biosens Bioelectron; 2009 Jan; 24(5):1508-11. PubMed ID: 18805688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system.
    Wada K; Taniguchi A; Kobayashi J; Yamato M; Okano T
    Biotechnol Bioeng; 2008 Apr; 99(6):1513-7. PubMed ID: 18080341
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectrally resolved flow imaging of fluids inside a microfluidic chip with ultrahigh time resolution.
    Harel E; Pines A
    J Magn Reson; 2008 Aug; 193(2):199-206. PubMed ID: 18538599
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impedimetric and optical interrogation of single cells in a microfluidic device for real-time viability and chemical response assessment.
    James CD; Reuel N; Lee ES; Davalos RV; Mani SS; Carroll-Portillo A; Rebeil R; Martino A; Apblett CA
    Biosens Bioelectron; 2008 Jan; 23(6):845-51. PubMed ID: 17933506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput sorting and analysis of human sperm with a ring-shaped laser trap.
    Shao B; Shi LZ; Nascimento JM; Botvinick EL; Ozkan M; Berns MW; Esener SC
    Biomed Microdevices; 2007 Jun; 9(3):361-9. PubMed ID: 17226100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time detection of hyperosmotic stress response in optically trapped single yeast cells using Raman microspectroscopy.
    Singh GP; Creely CM; Volpe G; Grötsch H; Petrov D
    Anal Chem; 2005 Apr; 77(8):2564-8. PubMed ID: 15828794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.