These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 17180369)
1. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Frank DA Oecologia; 2007 May; 152(1):131-9. PubMed ID: 17180369 [TBL] [Abstract][Full Text] [Related]
2. Impacts of grazing exclusion on productivity partitioning along regional plant diversity and climatic gradients in Tibetan alpine grasslands. Wu J; Li M; Fiedler S; Ma W; Wang X; Zhang X; Tietjen B J Environ Manage; 2019 Feb; 231():635-645. PubMed ID: 30390448 [TBL] [Abstract][Full Text] [Related]
3. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Sun Y; Yang Y; Zhao X; Tang Z; Wang S; Fang J Sci China Life Sci; 2021 May; 64(5):739-751. PubMed ID: 33216276 [TBL] [Abstract][Full Text] [Related]
4. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau. Zeng C; Wu J; Zhang X PLoS One; 2015; 10(8):e0135173. PubMed ID: 26284515 [TBL] [Abstract][Full Text] [Related]
5. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes. Wilcox KR; von Fischer JC; Muscha JM; Petersen MK; Knapp AK Glob Chang Biol; 2015 Jan; 21(1):335-44. PubMed ID: 25044242 [TBL] [Abstract][Full Text] [Related]
6. Density-dependent plant growth drives grazer stimulation of aboveground net primary production in Yellowstone grasslands. Penner JF; Frank DA Oecologia; 2021 Jul; 196(3):851-861. PubMed ID: 34117517 [TBL] [Abstract][Full Text] [Related]
7. Asymmetric response of aboveground and belowground temporal stability to nitrogen and phosphorus addition in a Tibetan alpine grassland. Wang Y; Wang C; Ren F; Jing X; Ma W; He JS; Jiang L Glob Chang Biol; 2023 Dec; 29(24):7072-7084. PubMed ID: 37795748 [TBL] [Abstract][Full Text] [Related]
8. Extreme drought does not alter the stability of aboveground net primary productivity but decreases the stability of belowground net primary productivity in a desert steppe of northern China. Li X; Zuo X; Zhao X; Wang S; Yue P; Xu C; Yu Q; Medina-Roldán E Environ Sci Pollut Res Int; 2023 Feb; 30(9):24319-24328. PubMed ID: 36334210 [TBL] [Abstract][Full Text] [Related]
9. Linking leaf traits to the temporal stability of above- and belowground productivity under global change and land use scenarios in a semi-arid grassland of Inner Mongolia. Xu F; Li J; Wu L; Su J; Wang Y; Chen D; Bai Y Sci Total Environ; 2022 Apr; 818():151858. PubMed ID: 34822882 [TBL] [Abstract][Full Text] [Related]
10. Opposing responses of temporal stability of aboveground and belowground net primary productivity to water and nitrogen enrichment in a temperate grassland. Xu Z; Jiang L; Ren H; Han X Glob Chang Biol; 2024 Jan; 30(1):e17071. PubMed ID: 38273548 [TBL] [Abstract][Full Text] [Related]
11. As above, not so below: Long-term dynamics of net primary production across a dryland transition zone. Brown RF; Collins SL Glob Chang Biol; 2023 Jul; 29(14):3941-3953. PubMed ID: 37095743 [TBL] [Abstract][Full Text] [Related]
12. Phyllosphere Community Assembly and Response to Drought Stress on Common Tropical and Temperate Forage Grasses. Bechtold EK; Ryan S; Moughan SE; Ranjan R; Nüsslein K Appl Environ Microbiol; 2021 Aug; 87(17):e0089521. PubMed ID: 34161142 [TBL] [Abstract][Full Text] [Related]
13. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Wilcox KR; Shi Z; Gherardi LA; Lemoine NP; Koerner SE; Hoover DL; Bork E; Byrne KM; Cahill J; Collins SL; Evans S; Gilgen AK; Holub P; Jiang L; Knapp AK; LeCain D; Liang J; Garcia-Palacios P; Peñuelas J; Pockman WT; Smith MD; Sun S; White SR; Yahdjian L; Zhu K; Luo Y Glob Chang Biol; 2017 Oct; 23(10):4376-4385. PubMed ID: 28370946 [TBL] [Abstract][Full Text] [Related]
14. Plant traits and soil fertility mediate productivity losses under extreme drought in C Luo W; Griffin-Nolan RJ; Ma W; Liu B; Zuo X; Xu C; Yu Q; Luo Y; Mariotte P; Smith MD; Collins SL; Knapp AK; Wang Z; Han X Ecology; 2021 Oct; 102(10):e03465. PubMed ID: 34236696 [TBL] [Abstract][Full Text] [Related]
15. Soil Respiration in Semiarid Temperate Grasslands under Various Land Management. Wang Z; Ji L; Hou X; Schellenberg MP PLoS One; 2016; 11(1):e0147987. PubMed ID: 26808376 [TBL] [Abstract][Full Text] [Related]
16. Above- and belowground net-primary productivity: A field-based global database of grasslands. Sun Y; Chang J; Fang J Ecology; 2023 Feb; 104(2):e3904. PubMed ID: 36308510 [TBL] [Abstract][Full Text] [Related]
17. Effects of climate warming on carbon fluxes in grasslands- A global meta-analysis. Wang N; Quesada B; Xia L; Butterbach-Bahl K; Goodale CL; Kiese R Glob Chang Biol; 2019 May; 25(5):1839-1851. PubMed ID: 30801860 [TBL] [Abstract][Full Text] [Related]
18. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Luo W; Muraina TO; Griffin-Nolan RJ; Ma W; Song L; Fu W; Yu Q; Knapp AK; Wang Z; Han X; Collins SL Ecology; 2023 Feb; 104(2):e3920. PubMed ID: 36416074 [TBL] [Abstract][Full Text] [Related]
19. Is a drought a drought in grasslands? Productivity responses to different types of drought. Carroll CJW; Slette IJ; Griffin-Nolan RJ; Baur LE; Hoffman AM; Denton EM; Gray JE; Post AK; Johnston MK; Yu Q; Collins SL; Luo Y; Smith MD; Knapp AK Oecologia; 2021 Dec; 197(4):1017-1026. PubMed ID: 33416961 [TBL] [Abstract][Full Text] [Related]
20. Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Frank DA; Groffman PM; Evans RD; Tracy BF Oecologia; 2000 Apr; 123(1):116-121. PubMed ID: 28308736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]