BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1718037)

  • 1. A bacterial system for investigating transport effects of cystic fibrosis--associated mutations.
    Gibson AL; Wagner LM; Collins FS; Oxender DL
    Science; 1991 Oct; 254(5028):109-11. PubMed ID: 1718037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localised mutagenesis of the fts YEX operon: conditionally lethal missense substitutions in the FtsE cell division protein of Escherichia coli are similar to those found in the cystic fibrosis transmembrane conductance regulator protein (CFTR) of human patients.
    Gibbs TW; Gill DR; Salmond GP
    Mol Gen Genet; 1992 Jul; 234(1):121-8. PubMed ID: 1379670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein.
    Ko YH; Thomas PJ; Delannoy MR; Pedersen PL
    J Biol Chem; 1993 Nov; 268(32):24330-8. PubMed ID: 7693699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein.
    Cutting GR; Kasch LM; Rosenstein BJ; Zielenski J; Tsui LC; Antonarakis SE; Kazazian HH
    Nature; 1990 Jul; 346(6282):366-9. PubMed ID: 1695717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations.
    Shyamala V; Baichwal V; Beall E; Ames GF
    J Biol Chem; 1991 Oct; 266(28):18714-9. PubMed ID: 1717452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sequence and genetic characterization reveal six essential genes for the LIV-I and LS transport systems of Escherichia coli.
    Adams MD; Wagner LM; Graddis TJ; Landick R; Antonucci TK; Gibson AL; Oxender DL
    J Biol Chem; 1990 Jul; 265(20):11436-43. PubMed ID: 2195019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of livG, a membrane-associated component of the branched-chain amino acid transport in Escherichia coli.
    Nazos PM; Mayo MM; Su TZ; Anderson JJ; Oxender DL
    J Bacteriol; 1985 Sep; 163(3):1196-202. PubMed ID: 2993238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cystic fibrosis allele encoding missense mutations in both nucleotide binding folds of the cystic fibrosis transmembrane conductance regulator.
    Kälin N; Dörk T; Tümmler B
    Hum Mutat; 1992; 1(3):204-10. PubMed ID: 1284535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequences and characterization of liv genes encoding components of the high-affinity branched-chain amino acid transport system in Salmonella typhimurium.
    Matsubara K; Ohnishi K; Kiritani K
    J Biochem; 1992 Jul; 112(1):93-101. PubMed ID: 1429514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding.
    Logan J; Hiestand D; Daram P; Huang Z; Muccio DD; Hartman J; Haley B; Cook WJ; Sorscher EJ
    J Clin Invest; 1994 Jul; 94(1):228-36. PubMed ID: 7518829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functions of the cystic fibrosis transmembrane conductance regulator protein.
    Frizzell RA
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of the cystic fibrosis transmembrane conductance regulator.
    Gregory RJ; Cheng SH; Rich DP; Marshall J; Paul S; Hehir K; Ostedgaard L; Klinger KW; Welsh MJ; Smith AE
    Nature; 1990 Sep; 347(6291):382-6. PubMed ID: 1699127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cystic fibrosis: recent structural insights.
    Dorwart M; Thibodeau P; Thomas P
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():91-4. PubMed ID: 15463935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis-type mutational analysis in the ATP-binding cassette transporter signature of human P-glycoprotein MDR1.
    Hoof T; Demmer A; Hadam MR; Riordan JR; Tümmler B
    J Biol Chem; 1994 Aug; 269(32):20575-83. PubMed ID: 7914197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The cystic fibrosis gene, its product CFTR protein and its mutations].
    Goossens M; Fanen P; Costes B; Ghanem N
    Bull Acad Natl Med; 1993 Mar; 177(3):371-80; discussion 380-1. PubMed ID: 7689915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular biological analysis of cystic fibrosis--a model example for the strategy of "reverse genetics"].
    Coutelle C; Grade K
    Padiatr Grenzgeb; 1992; 31(2):73-95. PubMed ID: 1284810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activities of the Escherichia coli MalK protein in maltose transport, regulation, and inducer exclusion can be separated by mutations.
    Kühnau S; Reyes M; Sievertsen A; Shuman HA; Boos W
    J Bacteriol; 1991 Apr; 173(7):2180-6. PubMed ID: 2007546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ABC transporters: from microorganisms to man.
    Higgins CF
    Annu Rev Cell Biol; 1992; 8():67-113. PubMed ID: 1282354
    [No Abstract]   [Full Text] [Related]  

  • 20. A frame-shift mutation in the cystic fibrosis gene.
    White MB; Amos J; Hsu JM; Gerrard B; Finn P; Dean M
    Nature; 1990 Apr; 344(6267):665-7. PubMed ID: 1691449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.