These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 17180371)
1. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory. O'Reilly-Wapstra JM; Iason GR; Thoss V Oecologia; 2007 May; 152(1):82-91. PubMed ID: 17180371 [TBL] [Abstract][Full Text] [Related]
2. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. Lundborg L; Nordlander G; Björklund N; Nordenhem H; Borg-Karlson AK J Chem Ecol; 2016 Dec; 42(12):1237-1246. PubMed ID: 27896555 [TBL] [Abstract][Full Text] [Related]
3. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes? Iason GR; O'Reilly-Wapstra JM; Brewer MJ; Summers RW; Moore BD Philos Trans R Soc Lond B Biol Sci; 2011 May; 366(1569):1337-45. PubMed ID: 21444308 [TBL] [Abstract][Full Text] [Related]
4. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
5. Assessment and implications of intraspecific and phenological variability in monoterpenes of Scots pine (Pinus sylvestris) foliage. Thoss V; O'Reilly-Wapstra J; Iason GR J Chem Ecol; 2007 Mar; 33(3):477-91. PubMed ID: 17268824 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Richter S; Kipfer T; Wohlgemuth T; Calderón Guerrero C; Ghazoul J; Moser B Oecologia; 2012 May; 169(1):269-79. PubMed ID: 22081261 [TBL] [Abstract][Full Text] [Related]
7. Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Shannon RW; Félix AE; Poppy GM; Newland PL; van Dam NM; Hanley ME Ann Bot; 2016 May; 117(6):1073-82. PubMed ID: 27009912 [TBL] [Abstract][Full Text] [Related]
8. Host selection in Tomicus piniperda L.: composition of monoterpene hydrocarbons in relation to attack frequency in the shoot feeding phase. Almquist AC; Fäldt J; Yart A; Chevet Y; Sauvard D; Lieutier F; Borg-Karlson AK Z Naturforsch C J Biosci; 2006; 61(5-6):439-44. PubMed ID: 16869505 [TBL] [Abstract][Full Text] [Related]
9. Comparing the variation of needle and wood terpenoids in Scots pine provenances. Manninen AM; Tarhanen S; Vuorinen M; Kainulaine P J Chem Ecol; 2002 Jan; 28(1):211-28. PubMed ID: 11868675 [TBL] [Abstract][Full Text] [Related]
10. Does climate-related in situ variability of Scots pine (Pinus sylvestris L.) needles have a genetic basis? Evidence from common garden experiments. Jankowski A; Wyka TP; Żytkowiak R; Danusevičius D; Oleksyn J Tree Physiol; 2019 Apr; 39(4):573-589. PubMed ID: 30715504 [TBL] [Abstract][Full Text] [Related]
11. The acceptability of meadow plants to the slug Deroceras reticulatum and implications for grassland restoration. Barlow SE; Close AJ; Port GR Ann Bot; 2013 Aug; 112(4):721-30. PubMed ID: 23632124 [TBL] [Abstract][Full Text] [Related]
12. Pine Defensive Monoterpene α-Pinene Influences the Feeding Behavior of Dendroctonus valens and Its Gut Bacterial Community Structure. Xu L; Shi Z; Wang B; Lu M; Sun J Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27809267 [TBL] [Abstract][Full Text] [Related]
13. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis. Lundborg L; Fedderwitz F; Björklund N; Nordlander G; Borg-Karlson AK Phytochemistry; 2016 Oct; 130():99-105. PubMed ID: 27417987 [TBL] [Abstract][Full Text] [Related]
14. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Harju AM; Venäläinen M; Laakso T; Saranpää P Tree Physiol; 2009 Jan; 29(1):19-25. PubMed ID: 19203929 [TBL] [Abstract][Full Text] [Related]
15. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery. Bansal S; Hallsby G; Löfvenius MO; Nilsson MC Tree Physiol; 2013 May; 33(5):451-63. PubMed ID: 23525156 [TBL] [Abstract][Full Text] [Related]
16. Effect of water stress and fungal inoculation on monoterpene emission from an historical and a new pine host of the mountain pine beetle. Lusebrink I; Evenden ML; Blanchet FG; Cooke JE; Erbilgin N J Chem Ecol; 2011 Sep; 37(9):1013-26. PubMed ID: 21874397 [TBL] [Abstract][Full Text] [Related]
17. Effects of zinc on Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture. Ivanov YV; Kartashov AV; Ivanova AI; Savochkin YV; Kuznetsov VV Plant Physiol Biochem; 2016 May; 102():1-9. PubMed ID: 26897114 [TBL] [Abstract][Full Text] [Related]
18. Correlating gene expression to physiological parameters and environmental conditions during cold acclimation of Pinus sylvestris, identification of molecular markers using cDNA microarrays. Joosen RV; Lammers M; Balk PA; Brønnum P; Konings MC; Perks M; Stattin E; van Wordragen MF; van der Geest AL Tree Physiol; 2006 Oct; 26(10):1297-313. PubMed ID: 16815832 [TBL] [Abstract][Full Text] [Related]
19. The essential oil qualitative and quantitative composition in the needles of Pinus sylvestris L. growing along industrial transects. Kupcinskiene E; Stikliene A; Judzentiene A Environ Pollut; 2008 Oct; 155(3):481-91. PubMed ID: 18372084 [TBL] [Abstract][Full Text] [Related]
20. The role of below-ground competition during early stages of secondary succession: the case of 3-year-old Scots pine (Pinus sylvestris L.) seedlings in an abandoned grassland. Picon-Cochard C; Coll L; Balandier P Oecologia; 2006 Jun; 148(3):373-83. PubMed ID: 16489460 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]