These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17180379)

  • 1. Hybrid maize breeding with doubled haploids: II. Optimum type and number of testers in two-stage selection for general combining ability.
    Longin CF; Utz HF; Melchinger AE; Reif JC
    Theor Appl Genet; 2007 Feb; 114(3):393-402. PubMed ID: 17180379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance.
    Wegenast T; Longin CF; Utz HF; Melchinger AE; Maurer HP; Reif JC
    Theor Appl Genet; 2008 Jul; 117(2):251-60. PubMed ID: 18438638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance.
    Longin CF; Utz HF; Reif JC; Wegenast T; Schipprack W; Melchinger AE
    Theor Appl Genet; 2007 Aug; 115(4):519-27. PubMed ID: 17604975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid maize breeding with doubled haploids: I. One-stage versus two-stage selection for testcross performance.
    Longin CF; Utz HF; Reif JC; Schipprack W; Melchinger AE
    Theor Appl Genet; 2006 Mar; 112(5):903-12. PubMed ID: 16435127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum allocation of test resources and comparison of breeding strategies for hybrid wheat.
    Longin CF; Mi X; Melchinger AE; Reif JC; Würschum T
    Theor Appl Genet; 2014 Oct; 127(10):2117-26. PubMed ID: 25104327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid maize breeding with doubled haploids: V. Selection strategies for testcross performance with variable sizes of crosses and S(1) families.
    Wegenast T; Utz HF; Longin CF; Maurer HP; Dhillon BS; Melchinger AE
    Theor Appl Genet; 2010 Feb; 120(4):699-708. PubMed ID: 19865804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Best linear unbiased prediction and optimum allocation of test resources in maize breeding with doubled haploids.
    Mi X; Wegenast T; Utz HF; Dhillon BS; Melchinger AE
    Theor Appl Genet; 2011 Jun; 123(1):1-10. PubMed ID: 21547486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doubled haploid versus S1 family recurrent selection for testcross performance in a maize population.
    Bordes J; Charmet G; de Vaulx RD; Pollacsek M; Beckert M; Gallais A
    Theor Appl Genet; 2006 Apr; 112(6):1063-72. PubMed ID: 16432736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale.
    Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF
    Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grouping of tropical mid-altitude maize inbred lines on the basis of yield data and molecular markers.
    Menkir A; Melake-Berhan A; The C; Ingelbrecht I; Adepoju A
    Theor Appl Genet; 2004 May; 108(8):1582-90. PubMed ID: 14985970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding.
    Longin CF; Mi X; Würschum T
    Theor Appl Genet; 2015 Jul; 128(7):1297-306. PubMed ID: 25877519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MBP (version 1.0): a software package to optimize maize breeding procedures based on doubled haploid lines.
    Gordillo GA; Geiger HH
    J Hered; 2008; 99(2):227-31. PubMed ID: 18276804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General combining ability of most yield-related traits had a genetic basis different from their corresponding traits per se in a set of maize introgression lines.
    Huang J; Qi H; Feng X; Huang Y; Zhu L; Yue B
    Genetica; 2013 Dec; 141(10-12):453-61. PubMed ID: 24135978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal testcross design for genome-wide prediction of maize single-cross performance.
    Sweet PK; Bernardo R
    Theor Appl Genet; 2023 Aug; 136(9):184. PubMed ID: 37555961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents.
    Larièpe A; Moreau L; Laborde J; Bauland C; Mezmouk S; Décousset L; Mary-Huard T; Fiévet JB; Gallais A; Dubreuil P; Charcosset A
    Theor Appl Genet; 2017 Feb; 130(2):403-417. PubMed ID: 27913832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QTL mapping for European corn borer resistance ( Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize ( Zea mays L.) germplasm.
    Papst C; Bohn M; Utz HF; Melchinger AE; Klein D; Eder J
    Theor Appl Genet; 2004 May; 108(8):1545-54. PubMed ID: 15014876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breeding maize as biogas substrate in Central Europe: II. Quantitative-genetic parameters for inbred lines and correlations with testcross performance.
    Grieder C; Dhillon BS; Schipprack W; Melchinger AE
    Theor Appl Genet; 2012 Apr; 124(6):981-8. PubMed ID: 22159757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testcross performance of doubled haploid lines from European flint maize landraces is promising for broadening the genetic base of elite germplasm.
    Brauner PC; Schipprack W; Utz HF; Bauer E; Mayer M; Schön CC; Melchinger AE
    Theor Appl Genet; 2019 Jun; 132(6):1897-1908. PubMed ID: 30877313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting the accuracy of genomic prediction with different selection targets in the training and prediction set as well as truncation selection.
    Schopp P; Riedelsheimer C; Utz HF; Schön CC; Melchinger AE
    Theor Appl Genet; 2015 Nov; 128(11):2189-201. PubMed ID: 26231985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying quantitative trait loci for the general combining ability of yield-relevant traits in maize.
    Liu X; Hu X; Li K; Liu Z; Wu Y; Feng G; Huang C; Wang H
    Breed Sci; 2021 Apr; 71(2):217-228. PubMed ID: 34377070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.