These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17180379)

  • 21. Prediction of single-cross hybrid performance in maize using haplotype blocks associated with QTL for grain yield.
    Schrag TA; Maurer HP; Melchinger AE; Piepho HP; Peleman J; Frisch M
    Theor Appl Genet; 2007 May; 114(8):1345-55. PubMed ID: 17323040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of combining ability loci for five yield-related traits in maize using a set of testcrosses with introgression lines.
    Qi H; Huang J; Zheng Q; Huang Y; Shao R; Zhu L; Zhang Z; Qiu F; Zhou G; Zheng Y; Yue B
    Theor Appl Genet; 2013 Feb; 126(2):369-77. PubMed ID: 23011316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of haploids and doubled haploids in maize.
    Prigge V; Melchinger AE
    Methods Mol Biol; 2012; 877():161-72. PubMed ID: 22610627
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of single-cross hybrid performance for grain yield and grain dry matter content in maize using AFLP markers associated with QTL.
    Schrag TA; Melchinger AE; Sørensen AP; Frisch M
    Theor Appl Genet; 2006 Oct; 113(6):1037-47. PubMed ID: 16896712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic variability, combining ability and molecular diversity-based parental line selection for heterosis breeding in field corn (Zea mays L.).
    Mukri G; Patil MS; Motagi BN; Bhat JS; Singh C; Jeevan Kumar SP; Gadag RN; Gupta NC; Simal-Gandara J
    Mol Biol Rep; 2022 Jun; 49(6):4517-4524. PubMed ID: 35474052
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Should maize doubled haploids be induced among F(1) or F (2) plants?
    Bernardo R
    Theor Appl Genet; 2009 Jul; 119(2):255-62. PubMed ID: 19396574
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oat Doubled Haploids Following Maize Pollination.
    Davies PA; Sidhu PK
    Methods Mol Biol; 2017; 1536():23-30. PubMed ID: 28132140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize.
    Böhm J; Schipprack W; Utz HF; Melchinger AE
    Theor Appl Genet; 2017 May; 130(5):861-873. PubMed ID: 28194473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Haploids: Constraints and opportunities in plant breeding.
    Dwivedi SL; Britt AB; Tripathi L; Sharma S; Upadhyaya HD; Ortiz R
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):812-29. PubMed ID: 26165969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing use of U.S. Ex-PVP inbred lines for enhancing agronomic performance of tropical Striga resistant maize inbred lines.
    Maazou AS; Gedil M; Adetimirin VO; Mengesha W; Meseka S; Ilesanmi O; Agre PA; Menkir A
    BMC Plant Biol; 2022 Jun; 22(1):286. PubMed ID: 35681124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recombination and genetic variance among maize doubled haploids induced from F
    Sleper JA; Bernardo R
    Theor Appl Genet; 2016 Dec; 129(12):2429-2436. PubMed ID: 27637886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Doubled Haploid Laboratory Protocol for Wheat Using Wheat-Maize Wide Hybridization.
    Santra M; Wang H; Seifert S; Haley S
    Methods Mol Biol; 2017; 1679():235-249. PubMed ID: 28913804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic prediction across years in a maize doubled haploid breeding program to accelerate early-stage testcross testing.
    Wang N; Wang H; Zhang A; Liu Y; Yu D; Hao Z; Ilut D; Glaubitz JC; Gao Y; Jones E; Olsen M; Li X; San Vicente F; Prasanna BM; Crossa J; Pérez-Rodríguez P; Zhang X
    Theor Appl Genet; 2020 Oct; 133(10):2869-2879. PubMed ID: 32607592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-based prediction of maize hybrid performance across genetic groups, testers, locations, and years.
    Albrecht T; Auinger HJ; Wimmer V; Ogutu JO; Knaak C; Ouzunova M; Piepho HP; Schön CC
    Theor Appl Genet; 2014 Jun; 127(6):1375-86. PubMed ID: 24723140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic analysis of water-deficit response traits in maize.
    Ahmad M; Saleem M; Ahsan M; Ahmad A
    Genet Mol Res; 2016 Mar; 15(1):. PubMed ID: 27051012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic drift and selection effects of modified recurrent full-sib selection programs in two F2 populations of European flint maize.
    Flachenecker C; Frisch M; Falke KC; Melchinger AE
    Theor Appl Genet; 2006 Oct; 113(6):1113-20. PubMed ID: 16896708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breeding maize as biogas substrate in Central Europe: I. Quantitative-genetic parameters for testcross performance.
    Grieder C; Dhillon BS; Schipprack W; Melchinger AE
    Theor Appl Genet; 2012 Apr; 124(6):971-80. PubMed ID: 22159756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Association between line per se and testcross performance for eight agronomic and quality traits in winter rye.
    Miedaner T; Schwegler DD; Wilde P; Reif JC
    Theor Appl Genet; 2014 Jan; 127(1):33-41. PubMed ID: 24072205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A study on natural recovery of tassel fertilization and doubling method in maize haploids.
    Jiang L; Yang XY; Li XY; Deng PK; Jing GX; Wang XQ; Xing Z; Zhao RG
    Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28340260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines.
    Osthushenrich T; Frisch M; Herzog E
    PLoS One; 2017; 12(12):e0188839. PubMed ID: 29200436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.