These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17180425)

  • 21. Escherichia coil O157:H7 transport in saturated porous media: role of solution chemistry and surface macromolecules.
    Kim HN; Bradford SA; Walker SL
    Environ Sci Technol; 2009 Jun; 43(12):4340-7. PubMed ID: 19603644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Significant Mobility of Novel Heteroaggregates of Montmorillonite Microparticles with Nanoscale Zerovalent Irons in Saturated Porous Media.
    Shen C; Teng J; Zheng W; Liu D; Ma K
    Toxics; 2022 Jun; 10(6):. PubMed ID: 35736940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.
    Shen C; Wang H; Lazouskaya V; Du Y; Lu W; Wu J; Zhang H; Huang Y
    J Contam Hydrol; 2015; 177-178():18-29. PubMed ID: 25805364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109.
    Abu-Lail NI; Camesano TA
    Environ Sci Technol; 2003 May; 37(10):2173-83. PubMed ID: 12785523
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria.
    Chen G; Walker SL
    Langmuir; 2007 Jun; 23(13):7162-9. PubMed ID: 17523680
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli transport in porous media: influence of cell strain, solution chemistry, and temperature.
    Kim HN; Walker SL
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):160-7. PubMed ID: 19278837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobility of Cellulose Nanocrystals in Porous Media: Effects of Ionic Strength, Iron Oxides, and Soil Colloids.
    Xu S; Shen C; Zhang X; Chen X; Radosevich M; Wang S; Zhuang J
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32085453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deposition and mobilization of viruses in unsaturated porous media: Roles of different interfaces and straining.
    Zhang W; Wu S; Qin Y; Li S; Lei L; Sun S; Yang Y
    Environ Pollut; 2021 Feb; 270():116072. PubMed ID: 33223339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relative transport of human adenovirus and MS2 in porous media.
    Wong K; Bouchard D; Molina M
    Colloids Surf B Biointerfaces; 2014 Oct; 122():778-784. PubMed ID: 25194593
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Pseudomonas aeruginosa biofilm in the initial adhesion, growth and detachment of Escherichia coli in porous media.
    Liu Y; Li J
    Environ Sci Technol; 2008 Jan; 42(2):443-9. PubMed ID: 18284144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Straining phenomena in bacteria transport through natural porous media.
    Díaz J; Rendueles M; Díaz M
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):400-9. PubMed ID: 19455361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors.
    Hou J; Xu X; Lan L; Miao L; Xu Y; You G; Liu Z
    Environ Pollut; 2020 Aug; 263(Pt B):114499. PubMed ID: 32283397
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantification of bacterial mass recovery as a function of pore-water velocity and ionic strength.
    Choi NC; Kim DJ; Kim SB
    Res Microbiol; 2007; 158(1):70-8. PubMed ID: 17125973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions.
    Li YV; Cathles LM
    J Colloid Interface Sci; 2014 Dec; 436():1-8. PubMed ID: 25259754
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold.
    Busalmen JP; de Sánchez SR
    Appl Environ Microbiol; 2001 Jul; 67(7):3188-94. PubMed ID: 11425740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Different electrically charged proteins result in diverse bacterial transport behaviors in porous media.
    Wu D; He L; Ge Z; Tong M; Kim H
    Water Res; 2018 Oct; 143():425-435. PubMed ID: 29986251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.