These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 17180437)

  • 1. Bioreclamation of coalmine overburden dumps--with special empasis on micronutrients and heavy metals accumulation in tree species.
    Maiti SK
    Environ Monit Assess; 2007 Feb; 125(1-3):111-22. PubMed ID: 17180437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential distribution of metals in tree tissues growing on reclaimed coal mine overburden dumps, Jharia coal field (India).
    Rana V; Maiti SK
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9745-9758. PubMed ID: 29368202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronological Variation of Metals in Reclaimed Coal Mine Soil and Tissues of Eucalyptus Hybrid Tree After 25 Years of Reclamation, Jharia Coal Field (India).
    Bandyopadhyay S; Rana V; Maiti SK
    Bull Environ Contam Toxicol; 2018 Nov; 101(5):604-610. PubMed ID: 30306191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil quality index for evaluation of reclaimed coal mine spoil.
    Mukhopadhyay S; Masto RE; Yadav A; George J; Ram LC; Shukla SP
    Sci Total Environ; 2016 Jan; 542(Pt A):540-50. PubMed ID: 26524272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A bioassessment of soil nickel genotoxic effect in orchard planted on rehabilitated coalmine overburden.
    Ličina V; Akšić MF; Colić S; Zec G
    Ecotoxicol Environ Saf; 2013 Dec; 98():374-82. PubMed ID: 24080096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective coal mine overburden treatment with topsoil and compost to optimise pasture or native vegetation establishment.
    Spargo A; Doley D
    J Environ Manage; 2016 Nov; 182():342-350. PubMed ID: 27497311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal accumulation by plant species from a coal mining area in Orissa.
    Deo B
    J Environ Biol; 2004 Apr; 25(2):163-6. PubMed ID: 15529873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eco-restoration approach for mine spoil overburden dump through biotechnological route.
    Jambhulkar HP; Kumar MS
    Environ Monit Assess; 2019 Nov; 191(12):772. PubMed ID: 31773282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E; Fernández Marcos ML; Vaamonde C; Fernández-Sanjurjo MJ
    Sci Total Environ; 2003 Sep; 313(1-3):185-97. PubMed ID: 12922070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antioxidant, photosynthesis and growth characteristics of plants grown in high sulphur coalmine overburden.
    Boruah HPD
    Indian J Exp Biol; 2017 Mar; 55(3):151-60. PubMed ID: 30184416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate.
    Ahirwal J; Maiti SK
    J Environ Manage; 2017 Oct; 201():369-377. PubMed ID: 28697380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient concentrations in tree leaves on brown and gray reclaimed mine soils in West Virginia.
    Wilson-Kokes L; Skousen J
    Sci Total Environ; 2014 May; 481():418-24. PubMed ID: 24631603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of engineering properties for the use of leached brown coal ash in soil covers.
    Mudd GM; Chakrabarti S; Kodikara J
    J Hazard Mater; 2007 Jan; 139(3):409-12. PubMed ID: 16621267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Organic substances in the artificial forest ecosystems created on overburden dumps of open-cut coal mines in Middle Siberia].
    Shugaleĭ LS
    Izv Akad Nauk Ser Biol; 2010; (4):498-507. PubMed ID: 20799651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Ziziphus mauritiana grown on fly ash dumps: Prospects for phytoremediation but concerns with the use of edible fruit.
    Pandey VC; Mishra T
    Int J Phytoremediation; 2018; 20(12):1250-1256. PubMed ID: 27936885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation.
    Dhal B; Das NN; Thatoi HN; Pandey BD
    J Hazard Mater; 2013 Sep; 260():141-9. PubMed ID: 23747472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China.
    Li MS; Luo YP; Su ZY
    Environ Pollut; 2007 May; 147(1):168-75. PubMed ID: 17014941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils.
    Asensio V; Vega FA; Singh BR; Covelo EF
    Sci Total Environ; 2013 Jan; 443():446-53. PubMed ID: 23220134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Plant and Soil Restoration Process and Degree of Refuse Dumps in Open-Pit Coal Mining Areas.
    Li X; Lei S; Liu F; Wang W
    Int J Environ Res Public Health; 2020 Mar; 17(6):. PubMed ID: 32192173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.