BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 1718053)

  • 1. Avian permeability barrier function reflects mode of sequestration and organization of stratum corneum lipids: reevaluation utilizing ruthenium tetroxide staining and lipase cytochemistry.
    Menon GK; Hou SY; Elias PM
    Tissue Cell; 1991; 23(4):445-56. PubMed ID: 1718053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avian sebokeratocytes and marine mammal lipokeratinocytes: structural, lipid biochemical, and functional considerations.
    Elias PM; Menon GK; Grayson S; Brown BE; Rehfeld SJ
    Am J Anat; 1987 Oct; 180(2):161-77. PubMed ID: 2445192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of the intercellular spaces of porcine epidermal and palatal stratum corneum: a quantitative study employing ruthenium tetroxide.
    Swartzendruber DC; Manganaro A; Madison KC; Kremer M; Wertz PW; Squier CA
    Cell Tissue Res; 1995 Feb; 279(2):271-6. PubMed ID: 7534652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction.
    Hou SY; Mitra AK; White SH; Menon GK; Ghadially R; Elias PM
    J Invest Dermatol; 1991 Feb; 96(2):215-23. PubMed ID: 1991982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Avian epidermal differentiation: role of lipids in permeability barrier formation.
    Menon GK; Brown BE; Elias PM
    Tissue Cell; 1986; 18(1):71-82. PubMed ID: 3961793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum.
    Madison KC; Swartzendruber DC; Wertz PW; Downing DT
    J Invest Dermatol; 1987 Jun; 88(6):714-8. PubMed ID: 3585055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercellular lamellar lipids in plantar stratum corneum.
    Egelrud T; Lundström A
    Acta Derm Venereol; 1991; 71(5):369-72. PubMed ID: 1684462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for the barrier abnormality following inhibition of HMG CoA reductase in murine epidermis.
    Menon GK; Feingold KR; Mao-Qiang M; Schaude M; Elias PM
    J Invest Dermatol; 1992 Feb; 98(2):209-19. PubMed ID: 1732385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordinate assembly of lipids and enzyme proteins into epidermal lamellar bodies.
    Rassner U; Feingold KR; Crumrine DA; Elias PM
    Tissue Cell; 1999 Oct; 31(5):489-98. PubMed ID: 10612259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of epidermal lipids using electron microscopy.
    Swartzendruber DC
    Semin Dermatol; 1992 Jun; 11(2):157-61. PubMed ID: 1498019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation.
    Jiang SJ; Chen JY; Lu ZF; Yao J; Che DF; Zhou XJ
    J Dermatol Sci; 2006 Oct; 44(1):29-36. PubMed ID: 16842978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The morphologic changes in lamellar bodies and intercorneocyte lipids after tape stripping and occlusion with a water vapor-impermeable membrane.
    Jiang S; Koo SW; Lee SH
    Arch Dermatol Res; 1998 Mar; 290(3):145-51. PubMed ID: 9558490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmium tetroxide and ruthenium tetroxide are complementary reagents for the preparation of epidermal samples for transmission electron microscopy.
    Swartzendruber DC; Burnett IH; Wertz PW; Madison KC; Squier CA
    J Invest Dermatol; 1995 Mar; 104(3):417-20. PubMed ID: 7861011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study.
    Fartasch M; Bassukas ID; Diepgen TL
    Br J Dermatol; 1993 Jan; 128(1):1-9. PubMed ID: 8427812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved barrier structure formation in air-exposed human keratinocyte culture systems.
    Fartasch M; Ponec M
    J Invest Dermatol; 1994 Mar; 102(3):366-74. PubMed ID: 8120421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of vibratome sections for the ruthenium tetroxide protocol: a key for optimal visualization of epidermal lipid bilayers of the entire human stratum corneum in transmission electron microscopy.
    van der Meulen J; van den Bergh BA; Mulder AA; Mommaas AM; Bouwstra JA; Koerten HK
    J Microsc; 1996 Oct; 184(Pt 1):67-70. PubMed ID: 8923758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function.
    Holleran WM; Takagi Y; Menon GK; Legler G; Feingold KR; Elias PM
    J Clin Invest; 1993 Apr; 91(4):1656-64. PubMed ID: 8473508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ontogeny of the epidermal barrier to water loss in the rat: correlation of function with stratum corneum structure and lipid content.
    Aszterbaum M; Menon GK; Feingold KR; Williams ML
    Pediatr Res; 1992 Apr; 31(4 Pt 1):308-17. PubMed ID: 1570196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stratum corneum, corneodesmosomes and ex vivo percutaneous penetration.
    Haftek M; Teillon MH; Schmitt D
    Microsc Res Tech; 1998 Nov; 43(3):242-9. PubMed ID: 9840802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeability barrier abnormality of hairless mouse epidermis after topical corticosteroid: characterization of stratum corneum lipids by ruthenium tetroxide staining and high-performance thin-layer chromatography.
    Sheu HM; Lee JY; Kuo KW; Tsai JC
    J Dermatol; 1998 May; 25(5):281-9. PubMed ID: 9640880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.