These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17180662)

  • 1. The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants.
    Martorell C; Ezcurra E
    Oecologia; 2007 Apr; 151(4):561-73. PubMed ID: 17180662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit.
    Simonin KA; Santiago LS; Dawson TE
    Plant Cell Environ; 2009 Jul; 32(7):882-92. PubMed ID: 19302173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.
    Reyes-García C; Mejia-Chang M; Griffiths H
    New Phytol; 2012 Feb; 193(3):745-754. PubMed ID: 22066982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leaf-trait responses to irrigation of the endemic fog-oasis tree Myrcianthes ferreyrae: can a fog specialist benefit from regular watering?
    Ramírez DA; Balaguer L; Mancilla R; González V; Coaguila D; Talavera C; Villegas L; Ortega A; Jiménez P; Moreno JM
    Tree Physiol; 2012 Jan; 32(1):65-73. PubMed ID: 22147224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits.
    Moore AFP; Antoine J; Bedoya LI; Medina A; Buck CS; Van Stan JT; Gotsch SG
    Sci Total Environ; 2023 Oct; 894():164791. PubMed ID: 37308022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vegetation pattern formation in a fog-dependent ecosystem.
    Borthagaray AI; Fuentes MA; Marquet PA
    J Theor Biol; 2010 Jul; 265(1):18-26. PubMed ID: 20417646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large leaves in warm, moist environments confer an advantage in seedling light interception efficiency.
    Lusk CH; Grierson ERP; Laughlin DC
    New Phytol; 2019 Aug; 223(3):1319-1327. PubMed ID: 30985943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of epidermal cell turgor pressure and photosynthetic activity of leaves of the atmospheric epiphyte Tillandsia usneoides (Bromeliaceae) after exposure to high humidity.
    Martin CE; Rux G; Herppich WB
    J Plant Physiol; 2013 Jan; 170(1):70-3. PubMed ID: 23000465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Within-twig leaf distribution patterns differ among plant life-forms in a subtropical Chinese forest.
    Meng F; Cao R; Yang D; Niklas KJ; Sun S
    Tree Physiol; 2013 Jul; 33(7):753-62. PubMed ID: 23933830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a unidirectional water valve in Tillandsia.
    Raux PS; Gravelle S; Dumais J
    Nat Commun; 2020 Jan; 11(1):396. PubMed ID: 31959754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants.
    Duursma RA; Falster DS; Valladares F; Sterck FJ; Pearcy RW; Lusk CH; Sendall KM; Nordenstahl M; Houter NC; Atwell BJ; Kelly N; Kelly JW; Liberloo M; Tissue DT; Medlyn BE; Ellsworth DS
    New Phytol; 2012 Jan; 193(2):397-408. PubMed ID: 22066945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fog water absorption by the leaves of epiphytes and non - epiphytes in Xishuangbanna].
    Zheng Y; Feng Y
    Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):977-81. PubMed ID: 16964926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon.
    Ohrui T; Nobira H; Sakata Y; Taji T; Yamamoto C; Nishida K; Yamakawa T; Sasuga Y; Yaguchi Y; Takenaga H; Tanaka S
    Planta; 2007 Dec; 227(1):47-56. PubMed ID: 17674031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The periodic wetting of leaves enhances water relations and growth of the long-lived conifer Araucaria angustifolia.
    Cassana FF; Dillenburg LR
    Plant Biol (Stuttg); 2013 Jan; 15(1):75-83. PubMed ID: 22672733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant structure predicts leaf litter capture in the tropical montane bromeliad Tillandsia turneri.
    Ospina-Bautista F; Estévez Varón JV
    Braz J Biol; 2016 May; 76(3):686-91. PubMed ID: 27143067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).
    Benz BW; Martin CE
    J Plant Physiol; 2006 Apr; 163(6):648-56. PubMed ID: 16545998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wettability, water absorption and water storage in rosette leaves of the dragon tree (Dracaena draco L.).
    Jura-Morawiec J; Marcinkiewicz J
    Planta; 2020 Jul; 252(2):30. PubMed ID: 32725269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Foliar trichome-aided formaldehyde uptake in the epiphytic Tillandsia velutina and its response to formaldehyde pollution.
    Li P; Pemberton R; Zheng G
    Chemosphere; 2015 Jan; 119():662-667. PubMed ID: 25150968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta?
    Reinert F; Leal-Costa MV; Junqueira NE; Tavares ES
    An Acad Bras Cienc; 2013; 85(2):561-73. PubMed ID: 23828343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated responses of rosette organogenesis, morphogenesis and architecture to reduced incident light in Arabidopsis thaliana results in higher efficiency of light interception.
    Chenu K; Franck N; Dauzat J; Barczi JF; Rey H; Lecoeur J
    Funct Plant Biol; 2006 Jan; 32(12):1123-1134. PubMed ID: 32689206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.