These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17180702)

  • 1. Resonant neurons and bushcricket behaviour.
    Webb B; Wessnitzer J; Bush S; Schul J; Buchli J; Ijspeert A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):285-8. PubMed ID: 17180702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory lateralization in bushcrickets: a new dichotic paradigm.
    Rheinlaender J; Shen JX; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):389-97. PubMed ID: 16362304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulses, patterns and paths: neurobiology of acoustic behaviour in crickets.
    Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jul; 192(7):677-89. PubMed ID: 16523340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pattern recognition in field crickets: concepts and neural evidence.
    Kostarakos K; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Jan; 201(1):73-85. PubMed ID: 25348550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae).
    Römer H; Krusch M
    J Comp Physiol A; 2000 Feb; 186(2):181-91. PubMed ID: 10707316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa.
    Shen JX
    Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple latency-dependent spiking-neuron model of cricket phonotaxis.
    Webb B; Scutt T
    Biol Cybern; 2000 Mar; 82(3):247-69. PubMed ID: 10664111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchrony during acoustic interactions in the bushcricket Mecopoda 'Chirper' (Tettigoniidae:Orthoptera) is generated by a combination of chirp-by-chirp resetting and change in intrinsic chirp rate.
    Nityananda V; Balakrishnan R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):51-65. PubMed ID: 16983544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroethology of acoustic communication in field crickets - from signal generation to song recognition in an insect brain.
    Schöneich S
    Prog Neurobiol; 2020 Nov; 194():101882. PubMed ID: 32673695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurobiology: tuning in by turning off.
    Hoy R
    Nature; 2002 Aug; 418(6900):831-3. PubMed ID: 12192395
    [No Abstract]   [Full Text] [Related]  

  • 11. Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket, Mecopoda elongata.
    Römer H; Hedwig B; Ott SR
    Eur J Neurosci; 2002 May; 15(10):1655-62. PubMed ID: 12059973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.
    Rau F; Clemens J; Naumov V; Hennig RM; Schreiber S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Nov; 201(11):1075-90. PubMed ID: 26293318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A corollary discharge maintains auditory sensitivity during sound production.
    Poulet JF; Hedwig B
    Nature; 2002 Aug; 418(6900):872-6. PubMed ID: 12192409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory orientation in crickets: pattern recognition controls reactive steering.
    Poulet JF; Hedwig B
    Proc Natl Acad Sci U S A; 2005 Oct; 102(43):15665-9. PubMed ID: 16227440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal adaptation improves the recognition of temporal patterns in a grasshopper.
    Ronacher B; Hennig RM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Apr; 190(4):311-9. PubMed ID: 14767599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New neural circuits for robot phonotaxis.
    Reeve RE; Webb BH
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2245-66. PubMed ID: 14599318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos.
    Tunstall DN; Pollack GS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):363-72. PubMed ID: 15668779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae: Orthoptera).
    Hartbauer M; Kratzer S; Steiner K; Römer H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Feb; 191(2):175-88. PubMed ID: 15614532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse-rate recognition in an insect: evidence of a role for oscillatory neurons.
    Bush SL; Schul J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):113-21. PubMed ID: 16142483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex auditory behaviour emerges from simple reactive steering.
    Hedwig B; Poulet JF
    Nature; 2004 Aug; 430(7001):781-5. PubMed ID: 15306810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.