BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 17181131)

  • 1. Differential interference contrast and confocal reflectance imaging of collagen organization in three-dimensional matrices.
    Petroll WM
    Scanning; 2006; 28(6):305-10. PubMed ID: 17181131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts.
    Petroll WM; Cavanagh HD; Jester JV
    Scanning; 2004; 26(1):1-10. PubMed ID: 15000286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.
    Guilbert M; Roig B; Terryn C; Garnotel R; Jeannesson P; Sockalingum GD; Manfait M; Perraut F; Dinten JM; Koenig A; Piot O
    Oncotarget; 2016 Feb; 7(8):8546-55. PubMed ID: 26885896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure.
    Roeder BA; Kokini K; Sturgis JE; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2002 Apr; 124(2):214-22. PubMed ID: 12002131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging cells in three-dimensional collagen matrix.
    Artym VV; Matsumoto K
    Curr Protoc Cell Biol; 2010 Sep; Chapter 10():Unit 10.18.1-20. PubMed ID: 20853341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices.
    Petroll WM; Ma L
    Cell Motil Cytoskeleton; 2003 Aug; 55(4):254-64. PubMed ID: 12845599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method allowing DIC imaging in conjunction with confocal microscopy.
    Cody SH; Xiang SD; Layton MJ; Handman E; Lam MH; Layton JE; Nice EC; Heath JK
    J Microsc; 2005 Mar; 217(Pt 3):265-74. PubMed ID: 15725130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo.
    Miron-Mendoza M; Koppaka V; Zhou C; Petroll WM
    Exp Cell Res; 2013 Oct; 319(16):2470-80. PubMed ID: 23819988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic assessment of cell-matrix mechanical interactions in three-dimensional culture.
    Petroll WM
    Methods Mol Biol; 2007; 370():67-82. PubMed ID: 17416988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44.
    Friedl P; Maaser K; Klein CE; Niggemann B; Krohne G; Zänker KS
    Cancer Res; 1997 May; 57(10):2061-70. PubMed ID: 9158006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Reflectance Traction Microscopy.
    Kim J; Jones CA; Groves NS; Sun B
    PLoS One; 2016; 11(6):e0156797. PubMed ID: 27304456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of orientations of collagen fibers by novel fiber-tracking software.
    Wu J; Rajwa B; Filmer DL; Hoffmann CM; Yuan B; Chiang CS; Sturgis J; Robinson JP
    Microsc Microanal; 2003 Dec; 9(6):574-80. PubMed ID: 14750992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis.
    Legant WR; Chen CS; Vogel V
    Integr Biol (Camb); 2012 Oct; 4(10):1164-74. PubMed ID: 22961409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the Hilbert transform for 3D visualization of differential interference contrast microscope images.
    Arnison MR; Cogswell CJ; Smith NI; Fekete PW; Larkin KG
    J Microsc; 2000 Jul; 199(Pt 1):79-84. PubMed ID: 10886531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy.
    Kamioka H; Honjo T; Takano-Yamamoto T
    Bone; 2001 Feb; 28(2):145-9. PubMed ID: 11182371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal reflection imaging of 3D fibrin polymers.
    Hartmann A; Boukamp P; Friedl P
    Blood Cells Mol Dis; 2006; 36(2):191-3. PubMed ID: 16488165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force.
    Pang Y; Wang X; Lee D; Greisler HP
    Biomaterials; 2011 May; 32(15):3776-83. PubMed ID: 21388676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectance confocal microscopy: hallmarks of keratinocyte cancer and its precursors.
    Prow TW; Tan JM; Pellacani G
    Curr Probl Dermatol; 2015; 46():85-94. PubMed ID: 25561211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.