These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17181131)

  • 1. Differential interference contrast and confocal reflectance imaging of collagen organization in three-dimensional matrices.
    Petroll WM
    Scanning; 2006; 28(6):305-10. PubMed ID: 17181131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic three-dimensional visualization of collagen matrix remodeling and cytoskeletal organization in living corneal fibroblasts.
    Petroll WM; Cavanagh HD; Jester JV
    Scanning; 2004; 26(1):1-10. PubMed ID: 15000286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.
    Guilbert M; Roig B; Terryn C; Garnotel R; Jeannesson P; Sockalingum GD; Manfait M; Perraut F; Dinten JM; Koenig A; Piot O
    Oncotarget; 2016 Feb; 7(8):8546-55. PubMed ID: 26885896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.
    Brightman AO; Rajwa BP; Sturgis JE; McCallister ME; Robinson JP; Voytik-Harbin SL
    Biopolymers; 2000 Sep; 54(3):222-34. PubMed ID: 10861383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure.
    Roeder BA; Kokini K; Sturgis JE; Robinson JP; Voytik-Harbin SL
    J Biomech Eng; 2002 Apr; 124(2):214-22. PubMed ID: 12002131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging cells in three-dimensional collagen matrix.
    Artym VV; Matsumoto K
    Curr Protoc Cell Biol; 2010 Sep; Chapter 10():Unit 10.18.1-20. PubMed ID: 20853341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct, dynamic assessment of cell-matrix interactions inside fibrillar collagen lattices.
    Petroll WM; Ma L
    Cell Motil Cytoskeleton; 2003 Aug; 55(4):254-64. PubMed ID: 12845599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method allowing DIC imaging in conjunction with confocal microscopy.
    Cody SH; Xiang SD; Layton MJ; Handman E; Lam MH; Layton JE; Nice EC; Heath JK
    J Microsc; 2005 Mar; 217(Pt 3):265-74. PubMed ID: 15725130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Techniques for assessing 3-D cell-matrix mechanical interactions in vitro and in vivo.
    Miron-Mendoza M; Koppaka V; Zhou C; Petroll WM
    Exp Cell Res; 2013 Oct; 319(16):2470-80. PubMed ID: 23819988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic assessment of cell-matrix mechanical interactions in three-dimensional culture.
    Petroll WM
    Methods Mol Biol; 2007; 370():67-82. PubMed ID: 17416988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibril microstructure affects strain transmission within collagen extracellular matrices.
    Roeder BA; Kokini K; Voytik-Harbin SL
    J Biomech Eng; 2009 Mar; 131(3):031004. PubMed ID: 19154063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganization and shedding of alpha2 and beta1 integrins and CD44.
    Friedl P; Maaser K; Klein CE; Niggemann B; Krohne G; Zänker KS
    Cancer Res; 1997 May; 57(10):2061-70. PubMed ID: 9158006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Reflectance Traction Microscopy.
    Kim J; Jones CA; Groves NS; Sun B
    PLoS One; 2016; 11(6):e0156797. PubMed ID: 27304456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of orientations of collagen fibers by novel fiber-tracking software.
    Wu J; Rajwa B; Filmer DL; Hoffmann CM; Yuan B; Chiang CS; Sturgis J; Robinson JP
    Microsc Microanal; 2003 Dec; 9(6):574-80. PubMed ID: 14750992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis.
    Legant WR; Chen CS; Vogel V
    Integr Biol (Camb); 2012 Oct; 4(10):1164-74. PubMed ID: 22961409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using the Hilbert transform for 3D visualization of differential interference contrast microscope images.
    Arnison MR; Cogswell CJ; Smith NI; Fekete PW; Larkin KG
    J Microsc; 2000 Jul; 199(Pt 1):79-84. PubMed ID: 10886531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy.
    Kamioka H; Honjo T; Takano-Yamamoto T
    Bone; 2001 Feb; 28(2):145-9. PubMed ID: 11182371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal reflection imaging of 3D fibrin polymers.
    Hartmann A; Boukamp P; Friedl P
    Blood Cells Mol Dis; 2006; 36(2):191-3. PubMed ID: 16488165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic quantitative visualization of single cell alignment and migration and matrix remodeling in 3-D collagen hydrogels under mechanical force.
    Pang Y; Wang X; Lee D; Greisler HP
    Biomaterials; 2011 May; 32(15):3776-83. PubMed ID: 21388676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflectance confocal microscopy: hallmarks of keratinocyte cancer and its precursors.
    Prow TW; Tan JM; Pellacani G
    Curr Probl Dermatol; 2015; 46():85-94. PubMed ID: 25561211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.