These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 17181255)

  • 1. A microfluidic channel flow cell for electrochemical ESR.
    Wain AJ; Compton RG; Le Roux R; Matthews S; Yunus K; Fisher AC
    J Phys Chem B; 2006 Dec; 110(51):26040-4. PubMed ID: 17181255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic channel flow cell for simultaneous cryoelectrochemical electron spin resonance.
    Wain AJ; Compton RG; Le Roux R; Matthews S; Fisher AC
    Anal Chem; 2007 Mar; 79(5):1865-73. PubMed ID: 17269792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ electrochemical ESR and voltammetric studies on the anodic oxidation of para-haloanilines in acetonitrile.
    Streeter I; Wain AJ; Thompson M; Compton RG
    J Phys Chem B; 2005 Jun; 109(25):12636-49. PubMed ID: 16852563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ and online monitoring of hydrodynamic flow profiles in microfluidic channels based upon microelectrochemistry: concept, theory, and validation.
    Amatore C; Oleinick A; Klymenko OV; Svir I
    Chemphyschem; 2005 Aug; 6(8):1581-9. PubMed ID: 16082662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout.
    Amatore C; Klymenko OV; Oleinick AI; Svir I
    Anal Chem; 2009 Sep; 81(18):7667-76. PubMed ID: 19697937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ and on-line monitoring of hydrodynamic flow profiles in microfluidic channels based on microelectrochemistry: optimization of channel geometrical parameters for best performance of flow profile reconstruction.
    Amatore C; Klymenko OV; Oleinick A; Svir I
    Chemphyschem; 2007 Aug; 8(12):1870-4. PubMed ID: 17663494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative electrochemical study of diffusion in room temperature ionic liquid solvents versus acetonitrile.
    Evans RG; Klymenko OV; Price PD; Davies SG; Hardacre C; Compton RG
    Chemphyschem; 2005 Mar; 6(3):526-33. PubMed ID: 15799479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.
    Snowden ME; King PH; Covington JA; Macpherson JV; Unwin PR
    Anal Chem; 2010 Apr; 82(8):3124-31. PubMed ID: 20329754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation and theory of the diffusion- and flow-induced concentration dispersion in microfluidic devices and HPLC systems based on rectangular microchannels.
    Morf WE; van der Wal PD; de Rooij NF
    Anal Chim Acta; 2008 Aug; 622(1-2):175-81. PubMed ID: 18602550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical characterization of diffusion-based extraction in cell-laden flow through a microfluidic channel.
    Fleming KK; Longmire EK; Hubel A
    J Biomech Eng; 2007 Oct; 129(5):703-11. PubMed ID: 17887896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical ESR and voltammetric studies of lithium ion pairing with electrogenerated 9,10-anthraquinone radical anions either free in acetonitrile solution or covalently bound to multiwalled carbon nanotubes.
    Wain AJ; Wildgoose GG; Heald CG; Jiang L; Jones TG; Compton RG
    J Phys Chem B; 2005 Mar; 109(9):3971-8. PubMed ID: 16851452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open micro-fluidic system for atomic force microscopy-guided in situ electrochemical probing of a single cell.
    Ryu W; Huang Z; Sun Park J; Moseley J; Grossman AR; Fasching RJ; Prinz FB
    Lab Chip; 2008 Sep; 8(9):1460-7. PubMed ID: 18818800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimum kinetic performance of open-tubular separations in microfluidic devices.
    Eghbali H; Desmet G
    J Sep Sci; 2007 Jul; 30(10):1377-97. PubMed ID: 17623419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.