BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1134 related articles for article (PubMed ID: 17181259)

  • 1. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsecond luminescence intensity fluctuations of single CdSe quantum dots.
    Biju V; Makita Y; Nagase T; Yamaoka Y; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Aug; 109(30):14350-5. PubMed ID: 16852805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidentate surface ligand exchange for the immobilization of CdSe/ZnS quantum dots and surface quantum dot-oligonucleotide conjugates.
    Algar WR; Krull UJ
    Langmuir; 2008 May; 24(10):5514-20. PubMed ID: 18412378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes.
    Dutta M; Jana S; Basak D
    Chemphyschem; 2010 Jun; 11(8):1774-9. PubMed ID: 20235113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal, nanoscale, hyperspectral imaging demonstrated on heterostructures of quantum dots and DNA-wrapped single-wall carbon nanotubes.
    Kang H; Clarke ML; Tang J; Woodward JT; Chou SG; Zhou Z; Simpson JR; Walker AR; Nguyen T; Hwang J
    ACS Nano; 2009 Nov; 3(11):3769-75. PubMed ID: 19845333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective enhancement of carbon nanotube photoluminescence by resonant energy transfer.
    Ahmad A; Kern K; Balasubramanian K
    Chemphyschem; 2009 Apr; 10(6):905-9. PubMed ID: 19308969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.
    Wang HQ; Li YQ; Wang JH; Xu Q; Li XQ; Zhao YD
    Anal Chim Acta; 2008 Mar; 610(1):68-73. PubMed ID: 18267141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-sensitive photoluminescence of CdSe quantum dot clusters.
    Biju V; Makita Y; Sonoda A; Yokoyama H; Baba Y; Ishikawa M
    J Phys Chem B; 2005 Jul; 109(29):13899-905. PubMed ID: 16852744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FRET and ligand related NON-FRET processes in single quantum dot-perylene bisimide assemblies.
    Kowerko D; Schuster J; Amecke N; Abdel-Mottaleb M; Dobrawa R; Würthner F; von Borczyskowski C
    Phys Chem Chem Phys; 2010 Apr; 12(16):4112-23. PubMed ID: 20379502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot modified multiwall carbon nanotubes.
    Olek M; Büsgen T; Hilgendorff M; Giersig M
    J Phys Chem B; 2006 Jul; 110(26):12901-4. PubMed ID: 16805589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dots acting as energy acceptors with organic dyes as donors in solution.
    Xu H; Huang X; Zhang W; Chen G; Zhu W; Zhong X
    Chemphyschem; 2010 Oct; 11(14):3167-71. PubMed ID: 20872922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent Modulation of Quantum Dot Photoluminescence Using a Combination of Charge Transfer and Förster Resonance Energy Transfer: Competitive Quenching and Multiplexed Biosensing Modality.
    Algar WR; Khachatrian A; Melinger JS; Huston AL; Stewart MH; Susumu K; Blanco-Canosa JB; Oh E; Dawson PE; Medintz IL
    J Am Chem Soc; 2017 Jan; 139(1):363-372. PubMed ID: 28009161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-standing single-walled carbon nanotube-CdSe quantum dots hybrid ultrathin films for flexible optoelectronic conversion devices.
    Shi Z; Liu C; Lv W; Shen H; Wang D; Chen L; Li LS; Jin J
    Nanoscale; 2012 Aug; 4(15):4515-21. PubMed ID: 22695781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 57.