BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 17181278)

  • 1. On enhanced translational diffusion or the fractional Stokes-Einstein relation observed in a supercooled ionic liquid.
    Ngai KL
    J Phys Chem B; 2006 Dec; 110(51):26211-4. PubMed ID: 17181278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures.
    Köddermann T; Ludwig R; Paschek D
    Chemphyschem; 2008 Sep; 9(13):1851-8. PubMed ID: 18752221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition.
    Ito N; Richert R
    J Phys Chem B; 2007 May; 111(18):5016-22. PubMed ID: 17474705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fractional Stokes-Einstein equation: application to Lennard-Jones, molecular, and ionic liquids.
    Harris KR
    J Chem Phys; 2009 Aug; 131(5):054503. PubMed ID: 19673570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Communications: The fractional Stokes-Einstein equation: application to water.
    Harris KR
    J Chem Phys; 2010 Jun; 132(23):231103. PubMed ID: 20572682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pressure on transport properties of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate.
    Kanakubo M; Harris KR; Tsuchihashi N; Ibuki K; Ueno M
    J Phys Chem B; 2007 Mar; 111(8):2062-9. PubMed ID: 17274650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-diffusion of supercooled o-terphenyl near the glass transition temperature.
    Mapes MK; Swallen SF; Ediger MD
    J Phys Chem B; 2006 Jan; 110(1):507-11. PubMed ID: 16471562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational diffusion of a nonpolar and a dipolar solute in 1-butyl-3-methylimidazolium hexafluorophosphate and glycerol: interplay of size effects and specific interactions.
    Mali KS; Dutt GB; Mukherjee T
    J Chem Phys; 2008 Feb; 128(5):054504. PubMed ID: 18266452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragility, Stokes-Einstein violation, and correlated local excitations in a coarse-grained model of an ionic liquid.
    Jeong D; Choi MY; Kim HJ; Jung Y
    Phys Chem Chem Phys; 2010 Feb; 12(8):2001-10. PubMed ID: 20145870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational diffusion in sucrose benzoate near the glass transition: probe size dependence in the breakdown of the Stokes-Einstein equation.
    Rajian JR; Quitevis EL
    J Chem Phys; 2007 Jun; 126(22):224506. PubMed ID: 17581062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of pressure on the transport properties of ionic liquids: 1-alkyl-3-methylimidazolium salts.
    Harris KR; Kanakubo M; Tsuchihashi N; Ibuki K; Ueno M
    J Phys Chem B; 2008 Aug; 112(32):9830-40. PubMed ID: 18637684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid.
    Becker SR; Poole PH; Starr FW
    Phys Rev Lett; 2006 Aug; 97(5):055901. PubMed ID: 17026116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational diffusion of neutral and charged solutes in 1-butyl-3-methylimidazolium-based ionic liquids: influence of the nature of the anion on solute rotation.
    Karve L; Dutt GB
    J Phys Chem B; 2012 Feb; 116(6):1824-30. PubMed ID: 22233259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relations between the fractional Stokes-Einstein and Nernst-Einstein equations and velocity correlation coefficients in ionic liquids and molten salts.
    Harris KR
    J Phys Chem B; 2010 Jul; 114(29):9572-7. PubMed ID: 20593760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of methanol in ionic liquids: validity of the Stokes-Einstein and Stokes-Einstein-Debye relations.
    Herold E; Strauch M; Michalik D; Appelhagen A; Ludwig R
    Chemphyschem; 2014 Oct; 15(14):3040-8. PubMed ID: 25055972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of imidazolium-based ionic liquids. II. Transport coefficients.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2009 Jan; 130(1):014703. PubMed ID: 19140627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate.
    Zhao W; Leroy F; Heggen B; Zahn S; Kirchner B; Balasubramanian S; Müller-Plathe F
    J Am Chem Soc; 2009 Nov; 131(43):15825-33. PubMed ID: 19827790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of diffusion constants and Stokes-Einstein violation in supercooled liquids.
    Sengupta S; Karmakar S
    J Chem Phys; 2014 Jun; 140(22):224505. PubMed ID: 24929405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sound velocity dispersion in room temperature ionic liquids studied using the transient grating method.
    Fukuda M; Terazima M; Kimura Y
    J Chem Phys; 2008 Mar; 128(11):114508. PubMed ID: 18361592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of oxygen in various room temperature ionic liquids in the temperature range 293-318 K: exploring the applicability of the Stokes-Einstein relationship in room temperature ionic liquids.
    Huang XJ; Rogers EI; Hardacre C; Compton RG
    J Phys Chem B; 2009 Jul; 113(26):8953-9. PubMed ID: 19499902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.