BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17182043)

  • 1. Intervertebral disc recovery after dynamic or static loading in vitro: is there a role for the endplate?
    van der Veen AJ; van Dieën JH; Nadort A; Stam B; Smit TH
    J Biomech; 2007; 40(10):2230-5. PubMed ID: 17182043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biologic response of the intervertebral disc to static and dynamic compression in vitro.
    Wang DL; Jiang SD; Dai LY
    Spine (Phila Pa 1976); 2007 Nov; 32(23):2521-8. PubMed ID: 17978649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc.
    Wang JL; Wu TK; Lin TC; Cheng CH; Huang SC
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1863-9. PubMed ID: 18670339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of vertebral [corrected] bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments.
    van der Veen AJ; Mullender MG; Kingma I; van Dieen JH; Smit TH
    J Biomech; 2008; 41(6):1260-8. PubMed ID: 18328489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of strain rate on the compressive stiffness properties of human lumbar intervertebral discs.
    Kemper AR; McNally C; Duma SM
    Biomed Sci Instrum; 2007; 43():176-81. PubMed ID: 17487077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Controlled distraction as a therapeutic option in moderate degeneration of the intervertebral disc -- an in vivo study in the rabbit-spine model].
    Unglaub F; Guehring T; Omlor G; Lorenz H; Carstens C; Kroeber MW
    Z Orthop Ihre Grenzgeb; 2006; 144(1):68-73. PubMed ID: 16498563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs.
    Gantenbein B; Grünhagen T; Lee CR; van Donkelaar CC; Alini M; Ito K
    Spine (Phila Pa 1976); 2006 Nov; 31(23):2665-73. PubMed ID: 17077734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in spinal height following sustained lumbar flexion and extension postures: a clinical measure of intervertebral disc hydration using stadiometry.
    Owens SC; Brismée JM; Pennell PN; Dedrick GS; Sizer PS; James CR
    J Manipulative Physiol Ther; 2009 Jun; 32(5):358-63. PubMed ID: 19539118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration.
    Kaigle A; Ekström L; Holm S; Rostedt M; Hansson T
    J Spinal Disord; 1998 Feb; 11(1):65-70. PubMed ID: 9493772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical differences between lumbar and tail discs in the mouse.
    Sarver JJ; Elliott DM
    J Orthop Res; 2005 Jan; 23(1):150-5. PubMed ID: 15607887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model.
    Drake JD; Aultman CD; McGill SM; Callaghan JP
    Clin Biomech (Bristol, Avon); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading.
    Hansson TH; Keller TS; Spengler DM
    J Orthop Res; 1987; 5(4):479-87. PubMed ID: 3681522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human cells derived from degenerate intervertebral discs respond differently to those derived from non-degenerate intervertebral discs following application of dynamic hydrostatic pressure.
    Le Maitre CL; Frain J; Fotheringham AP; Freemont AJ; Hoyland JA
    Biorheology; 2008; 45(5):563-75. PubMed ID: 19065005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short rest between cyclic flexion periods is a risk factor for a lumbar disorder.
    Hoops H; Zhou BH; Lu Y; Solomonow M; Patel V
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):745-57. PubMed ID: 17509738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of geometric deformation of lumbar intervertebral discs under in-vivo weightbearing condition.
    Wang S; Xia Q; Passias P; Wood K; Li G
    J Biomech; 2009 Apr; 42(6):705-11. PubMed ID: 19268946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent hydration of intervertebral discs during in vitro testing.
    Huber G; Morlock MM; Ito K
    Med Eng Phys; 2007 Sep; 29(7):808-13. PubMed ID: 17098458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervertebral neural foramina deformation due to two types of repetitive combined loading.
    Drake JD; Callaghan JP
    Clin Biomech (Bristol, Avon); 2009 Jan; 24(1):1-6. PubMed ID: 19008024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age changes in lumbar vertebrae and intervertebral discs.
    Twomey LT; Taylor JR
    Clin Orthop Relat Res; 1987 Nov; (224):97-104. PubMed ID: 3665259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.