These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17182265)

  • 1. A quantum chemical study of the mechanism of action of Vitamin K carboxylase (VKC) III. Intermediates and transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):409-14. PubMed ID: 17182265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum chemical study of the mechanism of action of vitamin K carboxylase (VKC). IV. Intermediates and transition states.
    Davis CH; Ii DD; Stafford DW; Pedersen LG
    J Phys Chem A; 2007 Aug; 111(31):7257-61. PubMed ID: 17503787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states.
    Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG
    J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction mechanism of the vitamin K-dependent glutamate carboxylase: a computational study.
    Silva PJ; Ramos MJ
    J Phys Chem B; 2007 Nov; 111(44):12883-7. PubMed ID: 17935315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle.
    Wu S; Liu S; Davis CH; Stafford DW; Kulman JD; Pedersen LG
    J Theor Biol; 2011 Jun; 279(1):143-9. PubMed ID: 21453708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamyl substrate-induced exposure of a free cysteine residue in the vitamin K-dependent gamma-glutamyl carboxylase is critical for vitamin K epoxidation.
    Bouchard BA; Furie B; Furie BC
    Biochemistry; 1999 Jul; 38(29):9517-23. PubMed ID: 10413529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and mechanism of action of the vitamin K-dependent gamma-glutamyl carboxylase: recent advances from mutagenesis studies.
    Furie BC; Furie B
    Thromb Haemost; 1997 Jul; 78(1):595-8. PubMed ID: 9198222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the vitamin K-dependent carboxylase active site: Cys-99 and Cys-450 are required for both epoxidation and carboxylation.
    Pudota BN; Miyagi M; Hallgren KW; West KA; Crabb JW; Misono KS; Berkner KL
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13033-8. PubMed ID: 11087858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and composition of the vitamin K-dependent gamma-glutamyl carboxylase-binding domain on osteocalcin.
    Houben RJ; Rijkers DT; Stanley TB; Acher F; Azerad R; Käkönen SM; Vermeer C; Soute BA
    Biochem J; 2002 May; 364(Pt 1):323-8. PubMed ID: 11988107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolic role of vitamin K.
    Suttie JW
    Fed Proc; 1980 Aug; 39(10):2730-5. PubMed ID: 7409197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The propeptide of the vitamin K-dependent carboxylase substrate accelerates formation of the gamma-glutamyl carbanion intermediate.
    Li S; Furie BC; Furie B; Walsh CT
    Biochemistry; 1997 May; 36(21):6384-90. PubMed ID: 9174354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical study of low temperature oxidation mechanism of dibenzofuran.
    Altarawneh M; Dlugogorski BZ; Kennedy EM; Mackie JC
    J Phys Chem A; 2006 Dec; 110(50):13560-7. PubMed ID: 17165883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin K and energy transduction: a base strength amplification mechanism.
    Dowd P; Hershline R; Ham SW; Naganathan S
    Science; 1995 Sep; 269(5231):1684-91. PubMed ID: 7569894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new model for vitamin K-dependent carboxylation: the catalytic base that deprotonates vitamin K hydroquinone is not Cys but an activated amine.
    Rishavy MA; Pudota BN; Hallgren KW; Qian W; Yakubenko AV; Song JH; Runge KW; Berkner KL
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13732-7. PubMed ID: 15365175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reaction mechanism of manganese superoxide dismutase studied by combined quantum and molecular mechanical calculations and multiconfigurational methods.
    Srnec M; Aquilante F; Ryde U; Rulísek L
    J Phys Chem B; 2009 Apr; 113(17):6074-86. PubMed ID: 19344143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of action of vitamin K.
    Dowd P; Ham SW; Naganathan S; Hershline R
    Annu Rev Nutr; 1995; 15():419-40. PubMed ID: 8527228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the Morita-Baylis-Hillman reaction: a computational investigation.
    Robiette R; Aggarwal VK; Harvey JN
    J Am Chem Soc; 2007 Dec; 129(50):15513-25. PubMed ID: 18041831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction mechanism of deoxyribonucleotidase: a theoretical study.
    Himo F; Guo JD; Rinaldo-Matthis A; Nordlund P
    J Phys Chem B; 2005 Oct; 109(42):20004-8. PubMed ID: 16853585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.