These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 17182266)
1. A quantum chemical study of the mechanism of action of Vitamin K epoxide reductase (VKOR) II. Transition states. Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG J Mol Graph Model; 2007 Sep; 26(2):401-8. PubMed ID: 17182266 [TBL] [Abstract][Full Text] [Related]
2. A quantum chemical study of the mechanism of action of Vitamin K carboxylase (VKC) III. Intermediates and transition states. Davis CH; Deerfield D; Wymore T; Stafford DW; Pedersen LG J Mol Graph Model; 2007 Sep; 26(2):409-14. PubMed ID: 17182265 [TBL] [Abstract][Full Text] [Related]
3. The conversion of vitamin K epoxide to vitamin K quinone and vitamin K quinone to vitamin K hydroquinone uses the same active site cysteines. Jin DY; Tie JK; Stafford DW Biochemistry; 2007 Jun; 46(24):7279-83. PubMed ID: 17523679 [TBL] [Abstract][Full Text] [Related]
4. Structure and function of vitamin K epoxide reductase. Tie JK; Stafford DW Vitam Horm; 2008; 78():103-30. PubMed ID: 18374192 [TBL] [Abstract][Full Text] [Related]
5. Quantum chemical study of the mechanism of action of vitamin K carboxylase (VKC). IV. Intermediates and transition states. Davis CH; Ii DD; Stafford DW; Pedersen LG J Phys Chem A; 2007 Aug; 111(31):7257-61. PubMed ID: 17503787 [TBL] [Abstract][Full Text] [Related]
6. Purified vitamin K epoxide reductase alone is sufficient for conversion of vitamin K epoxide to vitamin K and vitamin K to vitamin KH2. Chu PH; Huang TY; Williams J; Stafford DW Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19308-13. PubMed ID: 17164330 [TBL] [Abstract][Full Text] [Related]
7. Novel insight into the mechanism of the vitamin K oxidoreductase (VKOR): electron relay through Cys43 and Cys51 reduces VKOR to allow vitamin K reduction and facilitation of vitamin K-dependent protein carboxylation. Rishavy MA; Usubalieva A; Hallgren KW; Berkner KL J Biol Chem; 2011 Mar; 286(9):7267-78. PubMed ID: 20978134 [TBL] [Abstract][Full Text] [Related]
8. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. Shen G; Li C; Cao Q; Megta AK; Li S; Gao M; Liu H; Shen Y; Chen Y; Yu H; Li S; Li W FEBS J; 2022 Aug; 289(15):4564-4579. PubMed ID: 35113495 [TBL] [Abstract][Full Text] [Related]
9. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. Cain D; Hutson SM; Wallin R J Biol Chem; 1997 Nov; 272(46):29068-75. PubMed ID: 9360981 [TBL] [Abstract][Full Text] [Related]
10. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Oldenburg J; Bevans CG; Müller CR; Watzka M Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional insights into human vitamin K epoxide reductase and vitamin K epoxide reductase-like1. Van Horn WD Crit Rev Biochem Mol Biol; 2013; 48(4):357-72. PubMed ID: 23631591 [TBL] [Abstract][Full Text] [Related]
12. Vitamin K 2,3-epoxide reductase and the vitamin K-dependent gamma-carboxylation system. Wallin R; Sane DC; Hutson SM Thromb Res; 2002 Nov; 108(4):221-6. PubMed ID: 12617985 [TBL] [Abstract][Full Text] [Related]
13. Structure of a bacterial homologue of vitamin K epoxide reductase. Li W; Schulman S; Dutton RJ; Boyd D; Beckwith J; Rapoport TA Nature; 2010 Jan; 463(7280):507-12. PubMed ID: 20110994 [TBL] [Abstract][Full Text] [Related]
14. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system. Wajih N; Sane DC; Hutson SM; Wallin R J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149 [TBL] [Abstract][Full Text] [Related]
15. The vitamin K cycle. Stafford DW J Thromb Haemost; 2005 Aug; 3(8):1873-8. PubMed ID: 16102054 [TBL] [Abstract][Full Text] [Related]
16. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family. Bevans CG; Krettler C; Reinhart C; Watzka M; Oldenburg J Nutrients; 2015 Jul; 7(8):6224-49. PubMed ID: 26230708 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. Tie JK; Jin DY; Tie K; Stafford DW J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis of coumarin-type anticoagulant-sensitive VKORC1: evidence that highly conserved amino acids define structural requirements for enzymatic activity and inhibition by warfarin. Rost S; Fregin A; Hünerberg M; Bevans CG; Müller CR; Oldenburg J Thromb Haemost; 2005 Oct; 94(4):780-6. PubMed ID: 16270630 [TBL] [Abstract][Full Text] [Related]
19. Vitamin K epoxide reductase prefers ER membrane-anchored thioredoxin-like redox partners. Schulman S; Wang B; Li W; Rapoport TA Proc Natl Acad Sci U S A; 2010 Aug; 107(34):15027-32. PubMed ID: 20696932 [TBL] [Abstract][Full Text] [Related]
20. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. Wajih N; Sane DC; Hutson SM; Wallin R J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]