These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 17182282)

  • 1. Altered chloride homeostasis in neurological disorders: a new target.
    De Koninck Y
    Curr Opin Pharmacol; 2007 Feb; 7(1):93-9. PubMed ID: 17182282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of activity-dependent regulation of neuronal chloride homeostasis in development.
    Fiumelli H; Woodin MA
    Curr Opin Neurobiol; 2007 Feb; 17(1):81-6. PubMed ID: 17234400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of the cation-chloride cotransporters in neurological disease.
    Kahle KT; Staley KJ; Nahed BV; Gamba G; Hebert SC; Lifton RP; Mount DB
    Nat Clin Pract Neurol; 2008 Sep; 4(9):490-503. PubMed ID: 18769373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons.
    Friauf E; Wenz M; Oberhofer M; Nothwang HG; Balakrishnan V; Knipper M; Löhrke S
    Eur J Neurosci; 2008 Dec; 28(12):2371-80. PubMed ID: 19087168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cation-chloride cotransporters and neuronal function.
    Blaesse P; Airaksinen MS; Rivera C; Kaila K
    Neuron; 2009 Mar; 61(6):820-38. PubMed ID: 19323993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-homeostatic synaptic plasticity of glycine receptor function after chronic strychnine in developing cultured mouse spinal neurons.
    Carrasco MA; Castro PA; Sepulveda FJ; Cuevas M; Tapia JC; Izaurieta P; van Zundert B; Aguayo LG
    J Neurochem; 2007 Mar; 100(5):1143-54. PubMed ID: 17217420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of spinal cord locomotor networks and contribution of cation-chloride cotransporters.
    Vinay L; Jean-Xavier C
    Brain Res Rev; 2008 Jan; 57(1):103-10. PubMed ID: 17949820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal transmembrane chloride electrochemical gradient: a key player in GABA A receptor activation physiological effect.
    Cupello A
    Amino Acids; 2003 Jun; 24(4):335-46. PubMed ID: 12768497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurobiology. A homeostatic switch.
    Miles R
    Nature; 1999 Jan; 397(6716):215-6. PubMed ID: 9930694
    [No Abstract]   [Full Text] [Related]  

  • 10. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons.
    Nakajima K; Tohyama Y; Maeda S; Kohsaka S; Kurihara T
    Neurochem Int; 2007 May; 50(6):807-20. PubMed ID: 17459525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.
    Tyzio R; Minlebaev M; Rheims S; Ivanov A; Jorquera I; Holmes GL; Zilberter Y; Ben-Ari Y; Khazipov R
    Eur J Neurosci; 2008 May; 27(10):2515-28. PubMed ID: 18547241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.
    Ben-Ari Y; Gaiarsa JL; Tyzio R; Khazipov R
    Physiol Rev; 2007 Oct; 87(4):1215-84. PubMed ID: 17928584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA(B) receptors and synaptic modulation.
    Kornau HC
    Cell Tissue Res; 2006 Nov; 326(2):517-33. PubMed ID: 16932937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of chloride homeostasis in albino and pigmented rat visual cortex neurons.
    Diykov D; Barmashenko G; Hoffmann KP
    Neuroreport; 2008 Mar; 19(5):595-8. PubMed ID: 18388745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of oxytocin on GABA signalling in the foetal brain during delivery.
    Khazipov R; Tyzio R; Ben-Ari Y
    Prog Brain Res; 2008; 170():243-57. PubMed ID: 18655887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.
    Tyzio R; Khalilov I; Represa A; Crepel V; Zilberter Y; Rheims S; Aniksztejn L; Cossart R; Nardou R; Mukhtarov M; Minlebaev M; Epsztein J; Milh M; Becq H; Jorquera I; Bulteau C; Fohlen M; Oliver V; Dulac O; Dorfmüller G; Delalande O; Ben-Ari Y; Khazipov R
    Ann Neurol; 2009 Aug; 66(2):209-18. PubMed ID: 19743469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The GABA excitatory/inhibitory shift in brain maturation and neurological disorders.
    Ben-Ari Y; Khalilov I; Kahle KT; Cherubini E
    Neuroscientist; 2012 Oct; 18(5):467-86. PubMed ID: 22547529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of excitation by GABA(A) receptor internalization.
    Leidenheimer NJ
    Results Probl Cell Differ; 2008; 44():1-28. PubMed ID: 17549438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular potassium regulates the chloride reversal potential in cultured hippocampal neurons.
    Balena T; Acton BA; Koval D; Woodin MA
    Brain Res; 2008 Apr; 1205():12-20. PubMed ID: 18353290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The manipulation of cation-chloride co-transporters as a novel means to treat persistent pain, epilepsy and other neurological disorders.
    Coull JA; Gagnon M
    Curr Opin Investig Drugs; 2009 Jan; 10(1):56-61. PubMed ID: 19127487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.