BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17182391)

  • 1. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater.
    Li CS; Chia WC; Chen PS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):195-203. PubMed ID: 17182391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time quantitative PCR with gene probe, fluorochrome and flow cytometry for microorganism analysis.
    Chen PS; Li CS
    J Environ Monit; 2005 Mar; 7(3):257-62. PubMed ID: 15735784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaerosol characterization by flow cytometry with fluorochrome.
    Chen PS; Li CS
    J Environ Monit; 2005 Oct; 7(10):950-9. PubMed ID: 16193165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for microbiological quality assessment in drinking water: a comparative study.
    Helmi K; Barthod F; Méheut G; Henry A; Poty F; Laurent F; Charni-Ben-Tabassi N
    J Water Health; 2015 Mar; 13(1):34-41. PubMed ID: 25719463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining.
    Nescerecka A; Hammes F; Juhna T
    J Microbiol Methods; 2016 Dec; 131():172-180. PubMed ID: 27810378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of flow cytometry to wine microorganisms.
    Longin C; Petitgonnet C; Guilloux-Benatier M; Rousseaux S; Alexandre H
    Food Microbiol; 2017 Apr; 62():221-231. PubMed ID: 27889152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of disruption procedures for enumeration of activated sludge floc bacteria by flow cytometry.
    Falcioni T; Manti A; Boi P; Canonico B; Balsamo M; Papa S
    Cytometry B Clin Cytom; 2006 May; 70(3):149-53. PubMed ID: 16572416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow cytometric analysis of bacteria- and virus-like particles in lake sediments.
    Duhamel S; Jacquet S
    J Microbiol Methods; 2006 Mar; 64(3):316-32. PubMed ID: 16081175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water.
    Riepl M; Schauer S; Knetsch S; Holzhammer E; Farnleitner AH; Sommer R; Kirschner AK
    Nephrol Dial Transplant; 2011 Nov; 26(11):3640-5. PubMed ID: 21948860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis.
    Ferris MM; Stoffel CL; Maurer TT; Rowlen KL
    Anal Biochem; 2002 May; 304(2):249-56. PubMed ID: 12009703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk.
    Gunasekera TS; Veal DA; Attfield PV
    Int J Food Microbiol; 2003 Aug; 85(3):269-79. PubMed ID: 12878385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid quantification of bacteria and viruses in influent, settled water, activated sludge and effluent from a wastewater treatment plant using flow cytometry.
    Ma L; Mao G; Liu J; Yu H; Gao G; Wang Y
    Water Sci Technol; 2013; 68(8):1763-9. PubMed ID: 24185058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent dye-based simple staining for in vivo micronucleus test with flow cytometer.
    Harada A; Matsuzaki K; Takeiri A; Tanaka K; Mishima M
    Mutat Res; 2013 Mar; 751(2):85-90. PubMed ID: 23291344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry.
    Vaahtovuo J; Korkeamäki M; Munukka E; Viljanen MK; Toivanen P
    J Microbiol Methods; 2005 Dec; 63(3):276-86. PubMed ID: 15935498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques.
    Hoefel D; Grooby WL; Monis PT; Andrews S; Saint CP
    J Microbiol Methods; 2003 Dec; 55(3):585-97. PubMed ID: 14607402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis.
    Hammes F; Broger T; Weilenmann HU; Vital M; Helbing J; Bosshart U; Huber P; Odermatt RP; Sonnleitner B
    Cytometry A; 2012 Jun; 81(6):508-16. PubMed ID: 22489027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of Saccharomyces cerevisiae viability using BacLight.
    Zhang T; Fang HH
    Biotechnol Lett; 2004 Jun; 26(12):989-92. PubMed ID: 15269525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of viable yeasts and bacteria in wine by flow cytometry.
    Malacrinò P; Zapparoli G; Torriani S; Dellaglio F
    J Microbiol Methods; 2001 Jun; 45(2):127-34. PubMed ID: 11311398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments.
    Hammes F; Goldschmidt F; Vital M; Wang Y; Egli T
    Water Res; 2010 Jul; 44(13):3915-23. PubMed ID: 20605621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific and rapid enumeration of viable but nonculturable and viable-culturable gram-negative bacteria by using flow cytometry.
    Khan MM; Pyle BH; Camper AK
    Appl Environ Microbiol; 2010 Aug; 76(15):5088-96. PubMed ID: 20543046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.