These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 17182614)
1. Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38. Liu Q; Kriksunov IA; Graeff R; Lee HC; Hao Q J Biol Chem; 2007 Feb; 282(8):5853-61. PubMed ID: 17182614 [TBL] [Abstract][Full Text] [Related]
2. The transmembrane glycoprotein CD38 is a catalytically active transporter responsible for generation and influx of the second messenger cyclic ADP-ribose across membranes. Franco L; Guida L; Bruzzone S; Zocchi E; Usai C; De Flora A FASEB J; 1998 Nov; 12(14):1507-20. PubMed ID: 9806760 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38. Graeff R; Liu Q; Kriksunov IA; Kotaka M; Oppenheimer N; Hao Q; Lee HC J Biol Chem; 2009 Oct; 284(40):27629-36. PubMed ID: 19640843 [TBL] [Abstract][Full Text] [Related]
4. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. Graeff RM; Walseth TF; Fryxell K; Branton WD; Lee HC J Biol Chem; 1994 Dec; 269(48):30260-7. PubMed ID: 7982936 [TBL] [Abstract][Full Text] [Related]
5. Catalysis-associated conformational changes revealed by human CD38 complexed with a non-hydrolyzable substrate analog. Liu Q; Kriksunov IA; Moreau C; Graeff R; Potter BV; Lee HC; Hao Q J Biol Chem; 2007 Aug; 282(34):24825-32. PubMed ID: 17591784 [TBL] [Abstract][Full Text] [Related]
6. Structural basis for the mechanistic understanding of human CD38-controlled multiple catalysis. Liu Q; Kriksunov IA; Graeff R; Munshi C; Lee HC; Hao Q J Biol Chem; 2006 Oct; 281(43):32861-9. PubMed ID: 16951430 [TBL] [Abstract][Full Text] [Related]
7. Cyclic adenosine 5'-diphosphate ribose analogs without a "southern" ribose inhibit ADP-ribosyl cyclase-hydrolase CD38. Swarbrick JM; Graeff R; Zhang H; Thomas MP; Hao Q; Potter BV J Med Chem; 2014 Oct; 57(20):8517-29. PubMed ID: 25226087 [TBL] [Abstract][Full Text] [Related]
8. Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribose transport. Song EK; Rah SY; Lee YR; Yoo CH; Kim YR; Yeom JH; Park KH; Kim JS; Kim UH; Han MK J Biol Chem; 2011 Dec; 286(52):44480-90. PubMed ID: 22033928 [TBL] [Abstract][Full Text] [Related]
13. Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. Franco L; Zocchi E; Usai C; Guida L; Bruzzone S; Costa A; De Flora A J Biol Chem; 2001 Jun; 276(24):21642-8. PubMed ID: 11274199 [TBL] [Abstract][Full Text] [Related]
14. CD38 and ADP-ribosyl cyclase catalyze the synthesis of a dimeric ADP-ribose that potentiates the calcium-mobilizing activity of cyclic ADP-ribose. De Flora A; Guida L; Franco L; Zocchi E; Bruzzone S; Benatti U; Damonte G; Lee HC J Biol Chem; 1997 May; 272(20):12945-51. PubMed ID: 9148900 [TBL] [Abstract][Full Text] [Related]
15. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. Munshi C; Aarhus R; Graeff R; Walseth TF; Levitt D; Lee HC J Biol Chem; 2000 Jul; 275(28):21566-71. PubMed ID: 10781610 [TBL] [Abstract][Full Text] [Related]
16. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries. Sauve AA; Munshi C; Lee HC; Schramm VL Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331 [TBL] [Abstract][Full Text] [Related]
17. Cluster of differentiation 38 (CD38) mediates bile acid-induced acinar cell injury and pancreatitis through cyclic ADP-ribose and intracellular calcium release. Orabi AI; Muili KA; Javed TA; Jin S; Jayaraman T; Lund FE; Husain SZ J Biol Chem; 2013 Sep; 288(38):27128-27137. PubMed ID: 23940051 [TBL] [Abstract][Full Text] [Related]
18. Blocking NAD(+)/CD38/cADPR/Ca(2+) pathway in sepsis prevents organ damage. Peng QY; Ai ML; Zhang LN; Zou Y; Ma XH; Ai YH J Surg Res; 2016 Apr; 201(2):480-9. PubMed ID: 27020835 [TBL] [Abstract][Full Text] [Related]
19. Insights into the mechanism of bovine CD38/NAD+glycohydrolase from the X-ray structures of its Michaelis complex and covalently-trapped intermediates. Egea PF; Muller-Steffner H; Kuhn I; Cakir-Kiefer C; Oppenheimer NJ; Stroud RM; Kellenberger E; Schuber F PLoS One; 2012; 7(4):e34918. PubMed ID: 22529956 [TBL] [Abstract][Full Text] [Related]
20. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal. Zhang H; Graeff R; Chen Z; Zhang L; Zhang L; Lee H; Hao Q J Mol Biol; 2011 Jan; 405(4):1070-8. PubMed ID: 21134381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]