BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 17182773)

  • 1. Neural correlates of vibrotactile working memory in the human brain.
    Preuschhof C; Heekeren HR; Taskin B; Schubert T; Villringer A
    J Neurosci; 2006 Dec; 26(51):13231-9. PubMed ID: 17182773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content-Specific Codes of Parametric Vibrotactile Working Memory in Humans.
    Schmidt TT; Wu YH; Blankenburg F
    J Neurosci; 2017 Oct; 37(40):9771-9777. PubMed ID: 28893928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working memory for vibrotactile frequencies: comparison of cortical activity in blind and sighted individuals.
    Burton H; Sinclair RJ; Dixit S
    Hum Brain Mapp; 2010 Nov; 31(11):1686-701. PubMed ID: 20162595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of human primary somatosensory cortex in vibrotactile detection depends on task demand.
    Tamè L; Holmes NP
    Neuroimage; 2016 Sep; 138():184-196. PubMed ID: 27233148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOLD adaptation in vibrotactile stimulation: neuronal networks involved in frequency discrimination.
    Li Hegner Y; Saur R; Veit R; Butts R; Leiberg S; Grodd W; Braun C
    J Neurophysiol; 2007 Jan; 97(1):264-71. PubMed ID: 17065253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of cognitive demand on human cortical activation associated with vibrotactile stimulation.
    Albanese MC; Duerden EG; Bohotin V; Rainville P; Duncan GH
    J Neurophysiol; 2009 Sep; 102(3):1623-31. PubMed ID: 19553476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prior Information biases stimulus representations during vibrotactile decision making.
    Preuschhof C; Schubert T; Villringer A; Heekeren HR
    J Cogn Neurosci; 2010 May; 22(5):875-87. PubMed ID: 19413475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory correlates of vibrotactile frequency processing in human working memory.
    Spitzer B; Wacker E; Blankenburg F
    J Neurosci; 2010 Mar; 30(12):4496-502. PubMed ID: 20335486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oscillatory EEG signatures of postponed somatosensory decisions.
    Ludwig S; Herding J; Blankenburg F
    Hum Brain Mapp; 2018 Sep; 39(9):3611-3624. PubMed ID: 29717524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Causal Role of the Prefrontal Cortex and Somatosensory Cortex in Tactile Working Memory.
    Zhao D; Zhou YD; Bodner M; Ku Y
    Cereb Cortex; 2018 Oct; 28(10):3468-3477. PubMed ID: 28968894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity during working memory maintenance.
    Gazzaley A; Rissman J; D'Esposito M
    Cogn Affect Behav Neurosci; 2004 Dec; 4(4):580-99. PubMed ID: 15849899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. rTMS evidence of different delay and decision processes in a fronto-parietal neuronal network activated during spatial working memory.
    Koch G; Oliveri M; Torriero S; Carlesimo GA; Turriziani P; Caltagirone C
    Neuroimage; 2005 Jan; 24(1):34-9. PubMed ID: 15588594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional MRI of working memory and selective attention in vibrotactile frequency discrimination.
    Sörös P; Marmurek J; Tam F; Baker N; Staines WR; Graham SJ
    BMC Neurosci; 2007 Jul; 8():48. PubMed ID: 17610721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rehearsal of tactile working memory: Premotor cortex recruits two dissociable neuronal content representations.
    Schmidt TT; Schröder P; Reinhardt P; Blankenburg F
    Hum Brain Mapp; 2021 Jan; 42(1):245-258. PubMed ID: 33009881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes.
    Ricciardi E; Bonino D; Gentili C; Sani L; Pietrini P; Vecchi T
    Neuroscience; 2006 Apr; 139(1):339-49. PubMed ID: 16324793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the cortical evidence of a sensory-discrimination process.
    Romo R; Hernández A; Zainos A; Brody C; Salinas E
    Philos Trans R Soc Lond B Biol Sci; 2002 Aug; 357(1424):1039-51. PubMed ID: 12217172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper Beta Band Oscillations in Human Premotor Cortex Encode Subjective Choices in a Vibrotactile Comparison Task.
    Herding J; Spitzer B; Blankenburg F
    J Cogn Neurosci; 2016 May; 28(5):668-79. PubMed ID: 26836516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks.
    Gelnar PA; Krauss BR; Sheehe PR; Szeverenyi NM; Apkarian AV
    Neuroimage; 1999 Oct; 10(4):460-82. PubMed ID: 10493903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral EEG abnormalities during vibrotactile encoding and quantitative working memory processing in schizophrenia.
    Ludwig S; Spitzer B; Jacobs AM; Sekutowicz M; Sterzer P; Blankenburg F
    Neuroimage Clin; 2016; 11():578-587. PubMed ID: 27158590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Brain Mechanisms of Selection and Maintenance of Information during Working Memory.
    Quentin R; King JR; Sallard E; Fishman N; Thompson R; Buch ER; Cohen LG
    J Neurosci; 2019 May; 39(19):3728-3740. PubMed ID: 30833510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.