These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1718282)
1. Statherin: a major boundary lubricant of human saliva. Douglas WH; Reeh ES; Ramasubbu N; Raj PA; Bhandary KK; Levine MJ Biochem Biophys Res Commun; 1991 Oct; 180(1):91-7. PubMed ID: 1718282 [TBL] [Abstract][Full Text] [Related]
2. Solid-phase synthesis and characterization of human salivary statherin: a tyrosine-rich phosphoprotein inhibitor of calcium phosphate precipitation. Gururaja TL; Levine MJ Pept Res; 1996; 9(6):283-9. PubMed ID: 9048421 [TBL] [Abstract][Full Text] [Related]
3. Structural characteristics of human salivary statherin: a model for boundary lubrication at the enamel surface. Ramasubbu N; Thomas LM; Bhandary KK; Levine MJ Crit Rev Oral Biol Med; 1993; 4(3-4):363-70. PubMed ID: 8373992 [TBL] [Abstract][Full Text] [Related]
4. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. Raj PA; Johnsson M; Levine MJ; Nancollas GH J Biol Chem; 1992 Mar; 267(9):5968-76. PubMed ID: 1313424 [TBL] [Abstract][Full Text] [Related]
5. Binding of Porphyromonas gingivalis fimbriae to proline-rich glycoproteins in parotid saliva via a domain shared by major salivary components. Amano A; Shizukuishi S; Horie H; Kimura S; Morisaki I; Hamada S Infect Immun; 1998 May; 66(5):2072-7. PubMed ID: 9573091 [TBL] [Abstract][Full Text] [Related]
6. Delineation of conformational preferences in human salivary statherin by 1H, 31P NMR and CD studies: sequential assignment and structure-function correlations. Naganagowda GA; Gururaja TL; Levine MJ J Biomol Struct Dyn; 1998 Aug; 16(1):91-107. PubMed ID: 9745898 [TBL] [Abstract][Full Text] [Related]
7. Intraoral lubrication of PRP-1, statherin and mucin as studied by AFM. Hahn Berg IC; Lindh L; Arnebrant T Biofouling; 2004 Feb; 20(1):65-70. PubMed ID: 15079894 [TBL] [Abstract][Full Text] [Related]
8. Active domains of salivary statherin on apatitic surfaces for binding to Fusobacterium nucleatum cells. Sekine S; Kataoka K; Tanaka M; Nagata H; Kawakami T; Akaji K; Aimoto S; Shizukuishi S Microbiology (Reading); 2004 Jul; 150(Pt 7):2373-2379. PubMed ID: 15256578 [TBL] [Abstract][Full Text] [Related]
9. Mass spectrometric identification of key proteolytic cleavage sites in statherin affecting mineral homeostasis and bacterial binding domains. Helmerhorst EJ; Traboulsi G; Salih E; Oppenheim FG J Proteome Res; 2010 Oct; 9(10):5413-21. PubMed ID: 20731414 [TBL] [Abstract][Full Text] [Related]
10. Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva. Ramasubbu N; Reddy MS; Bergey EJ; Haraszthy GG; Soni SD; Levine MJ Biochem J; 1991 Dec; 280 ( Pt 2)(Pt 2):341-52. PubMed ID: 1747107 [TBL] [Abstract][Full Text] [Related]
11. Adsorption behavior of statherin and a statherin peptide onto hydroxyapatite and silica surfaces by in situ ellipsometry. Santos O; Kosoric J; Hector MP; Anderson P; Lindh L J Colloid Interface Sci; 2008 Feb; 318(2):175-82. PubMed ID: 18054952 [TBL] [Abstract][Full Text] [Related]
12. Expression and characterization of human salivary statherin from Escherichia coli using two different fusion constructs. Gilbert M; Stayton PS Protein Expr Purif; 1999 Jul; 16(2):243-50. PubMed ID: 10419821 [TBL] [Abstract][Full Text] [Related]
13. Multiple forms of statherin in human salivary secretions. Jensen JL; Lamkin MS; Troxler RF; Oppenheim FG Arch Oral Biol; 1991; 36(7):529-34. PubMed ID: 1663737 [TBL] [Abstract][Full Text] [Related]
14. Relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. Hay DI; Smith DJ; Schluckebier SK; Moreno EC J Dent Res; 1984 Jun; 63(6):857-63. PubMed ID: 6429216 [TBL] [Abstract][Full Text] [Related]
15. Adsorption of human salivary proteins to hydroxyapatite: a comparison between whole saliva and glandular salivary secretions. Jensen JL; Lamkin MS; Oppenheim FG J Dent Res; 1992 Sep; 71(9):1569-76. PubMed ID: 1381733 [TBL] [Abstract][Full Text] [Related]
16. Statherin is an in vivo pellicle constituent: identification and immuno-quantification. Li J; Helmerhorst EJ; Yao Y; Nunn ME; Troxler RF; Oppenheim FG Arch Oral Biol; 2004 May; 49(5):379-85. PubMed ID: 15041485 [TBL] [Abstract][Full Text] [Related]
17. Lubrication of human and bovine enamel compared in an artificial mouth. Reeh ES; Douglas WH; Levine MJ Arch Oral Biol; 1995 Nov; 40(11):1063-72. PubMed ID: 8670025 [TBL] [Abstract][Full Text] [Related]
19. Studies on the exchange of early pellicle proteins by mucin and whole saliva. Svendsen IE; Lindh L; Elofsson U; Arnebrant T J Colloid Interface Sci; 2008 May; 321(1):52-9. PubMed ID: 18272164 [TBL] [Abstract][Full Text] [Related]
20. An in vitro scanning microradiography study of the reduction in hydroxyapatite demineralization rate by statherin-like peptides as a function of increasing N-terminal length. Shah S; Kosoric J; Hector MP; Anderson P Eur J Oral Sci; 2011 Dec; 119 Suppl 1():13-8. PubMed ID: 22243221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]