BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17182856)

  • 1. Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation.
    Ahner A; Nakatsukasa K; Zhang H; Frizzell RA; Brodsky JL
    Mol Biol Cell; 2007 Mar; 18(3):806-14. PubMed ID: 17182856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels.
    Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X
    J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CFTR-Associated Ligand Arrests the Trafficking of the Mutant ΔF508 CFTR Channel in the ER Contributing to Cystic Fibrosis.
    Bergbower E; Boinot C; Sabirzhanova I; Guggino W; Cebotaru L
    Cell Physiol Biochem; 2018; 45(2):639-655. PubMed ID: 29402832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast.
    Youker RT; Walsh P; Beilharz T; Lithgow T; Brodsky JL
    Mol Biol Cell; 2004 Nov; 15(11):4787-97. PubMed ID: 15342786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.
    Zhang Y; Nijbroek G; Sullivan ML; McCracken AA; Watkins SC; Michaelis S; Brodsky JL
    Mol Biol Cell; 2001 May; 12(5):1303-14. PubMed ID: 11359923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast.
    Gnann A; Riordan JR; Wolf DH
    Mol Biol Cell; 2004 Sep; 15(9):4125-35. PubMed ID: 15215312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants.
    Sun F; Zhang R; Gong X; Geng X; Drain PF; Frizzell RA
    J Biol Chem; 2006 Dec; 281(48):36856-63. PubMed ID: 16954204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. VCP/p97 AAA-ATPase does not interact with the endogenous wild-type cystic fibrosis transmembrane conductance regulator.
    Goldstein RF; Niraj A; Sanderson TP; Wilson LS; Rab A; Kim H; Bebok Z; Collawn JF
    Am J Respir Cell Mol Biol; 2007 Jun; 36(6):706-14. PubMed ID: 17272822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells.
    Zaman K; Carraro S; Doherty J; Henderson EM; Lendermon E; Liu L; Verghese G; Zigler M; Ross M; Park E; Palmer LA; Doctor A; Stamler JS; Gaston B
    Mol Pharmacol; 2006 Oct; 70(4):1435-42. PubMed ID: 16857740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability.
    Hutt DM; Roth DM; Chalfant MA; Youker RT; Matteson J; Brodsky JL; Balch WE
    J Biol Chem; 2012 Jun; 287(26):21914-25. PubMed ID: 22474283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of calnexin in the ER quality control and productive folding of CFTR; differential effect of calnexin knockout on wild-type and DeltaF508 CFTR.
    Okiyoneda T; Niibori A; Harada K; Kohno T; Michalak M; Duszyk M; Wada I; Ikawa M; Shuto T; Suico MA; Kai H
    Biochim Biophys Acta; 2008 Sep; 1783(9):1585-94. PubMed ID: 18457676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hsp104 facilitates the endoplasmic-reticulum-associated degradation of disease-associated and aggregation-prone substrates.
    Doonan LM; Guerriero CJ; Preston GM; Buck TM; Khazanov N; Fisher EA; Senderowitz H; Brodsky JL
    Protein Sci; 2019 Jul; 28(7):1290-1306. PubMed ID: 31050848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regions outside the alpha-crystallin domain of the small heat shock protein Hsp26 are required for its dimerization.
    Chen J; Feige MJ; Franzmann TM; Bepperling A; Buchner J
    J Mol Biol; 2010 Apr; 398(1):122-31. PubMed ID: 20171228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing and function of CFTR-DeltaF508 are species-dependent.
    Ostedgaard LS; Rogers CS; Dong Q; Randak CO; Vermeer DW; Rokhlina T; Karp PH; Welsh MJ
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15370-5. PubMed ID: 17873061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting DNAJB9, a novel ER luminal co-chaperone, to rescue ΔF508-CFTR.
    Huang Y; Arora K; Mun KS; Yang F; Moon C; Yarlagadda S; Jegga A; Weaver T; Naren AP
    Sci Rep; 2019 Jul; 9(1):9808. PubMed ID: 31285458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.