BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17182919)

  • 1. The long-term relationship of wall stress to the natural history of abdominal aortic aneurysms (finite element analysis and other methods).
    Fillinger M
    Ann N Y Acad Sci; 2006 Nov; 1085():22-8. PubMed ID: 17182919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application.
    Vande Geest JP; Di Martino ES; Bohra A; Makaroun MS; Vorp DA
    Ann N Y Acad Sci; 2006 Nov; 1085():11-21. PubMed ID: 17182918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of initial stress for abdominal aortic aneurysm wall motion: dynamic MRI validated finite element analysis.
    Merkx MA; van 't Veer M; Speelman L; Breeuwer M; Buth J; van de Vosse FN
    J Biomech; 2009 Oct; 42(14):2369-73. PubMed ID: 19665127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution.
    Martufi G; Di Martino ES; Amon CH; Muluk SC; Finol EA
    J Biomech Eng; 2009 Jun; 131(6):061015. PubMed ID: 19449969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms.
    Wolters BJ; Rutten MC; Schurink GW; Kose U; de Hart J; van de Vosse FN
    Med Eng Phys; 2005 Dec; 27(10):871-83. PubMed ID: 16157501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms.
    Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA
    J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter.
    Fillinger MF; Marra SP; Raghavan ML; Kennedy FE
    J Vasc Surg; 2003 Apr; 37(4):724-32. PubMed ID: 12663969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple geometric characteristics fail to reliably predict abdominal aortic aneurysm wall stresses.
    Hua J; Mower WR
    J Vasc Surg; 2001 Aug; 34(2):308-15. PubMed ID: 11496284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of the photoelastic method and finite element analysis in the assessment of wall strain in abdominal aortic aneurysm models.
    Doyle BJ; Killion J; Callanan A
    J Biomech; 2012 Jun; 45(10):1759-68. PubMed ID: 22633540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy.
    Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA
    J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms.
    Maier A; Gee MW; Reeps C; Eckstein HH; Wall WA
    Biomech Model Mechanobiol; 2010 Oct; 9(5):511-21. PubMed ID: 20143120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a model for local drug delivery in abdominal aortic aneurysms.
    Vande Geest JP; Simon BR; Mortazavi A
    Ann N Y Acad Sci; 2006 Nov; 1085():396-9. PubMed ID: 17182962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Rupture risk of abdominal aortic aneurysms. The role of computational mechanics].
    Giannoglou G; Giannakoulas G; Hatzitolios AI; Rudolf J
    Herz; 2008 Jul; 33(5):354-61. PubMed ID: 18773155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms.
    Vande Geest JP; Wang DH; Wisniewski SR; Makaroun MS; Vorp DA
    Ann Biomed Eng; 2006 Jul; 34(7):1098-106. PubMed ID: 16786395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of blood flow and vessel geometry on wall stress and rupture risk of abdominal aortic aneurysms.
    Li Z; Kleinstreuer C
    J Med Eng Technol; 2006; 30(5):283-97. PubMed ID: 16980283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peak wall stress does not necessarily predict the location of rupture in abdominal aortic aneurysms.
    Georgakarakos E; Ioannou CV; Papaharilaou Y; Kostas T; Tsetis D; Katsamouris AN
    Eur J Vasc Endovasc Surg; 2010 Mar; 39(3):302-4. PubMed ID: 20005751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A summary of the contributions of the VA cooperative studies on abdominal aortic aneurysms.
    Lederle FA
    Ann N Y Acad Sci; 2006 Nov; 1085():29-38. PubMed ID: 17182920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometrical factors as predictors of increased growth rate or increased rupture risk in small aortic aneurysms.
    Georgakarakos E; Ioannou CV
    Med Hypotheses; 2012 Jul; 79(1):71-3. PubMed ID: 22541859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(13):2347-54. PubMed ID: 16872617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.