BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 17183133)

  • 1. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J; Delpy D; Elwell C; Beard P
    Phys Med Biol; 2007 Jan; 52(1):141-68. PubMed ID: 17183133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
    Laufer J; Elwell C; Delpy D; Beard P
    Phys Med Biol; 2005 Sep; 50(18):4409-28. PubMed ID: 16148401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom.
    Gade J; Palmqvist D; Plomgård P; Greisen G
    Phys Med Biol; 2006 Jan; 51(1):121-36. PubMed ID: 16357435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated wavelet denoising of photoacoustic signals for circulating melanoma cell detection and burn image reconstruction.
    Holan SH; Viator JA
    Phys Med Biol; 2008 Jun; 53(12):N227-36. PubMed ID: 18495977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme.
    Laufer J; Cox B; Zhang E; Beard P
    Appl Opt; 2010 Mar; 49(8):1219-33. PubMed ID: 20220877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo reflectance measurement of optical properties, blood oxygenation and motexafin lutetium uptake in canine large bowels, kidneys and prostates.
    Solonenko M; Cheung R; Busch TM; Kachur A; Griffin GM; Vulcan T; Zhu TC; Wang HW; Hahn SM; Yodh AG
    Phys Med Biol; 2002 Mar; 47(6):857-73. PubMed ID: 11936174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifrequency frequency-domain spectrometer for tissue analysis.
    Spichtig S; Hornung R; Brown DW; Haensse D; Wolf M
    Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source.
    Billeh YN; Liu M; Buma T
    Opt Express; 2010 Aug; 18(18):18519-24. PubMed ID: 20940743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoacoustic discrimination of viable and thermally coagulated blood using a two-wavelength method for burn injury monitoring.
    Talbert RJ; Holan SH; Viator JA
    Phys Med Biol; 2007 Apr; 52(7):1815-29. PubMed ID: 17374913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory and analysis of frequency-domain photoacoustic tomography.
    Baddour N
    J Acoust Soc Am; 2008 May; 123(5):2577-90. PubMed ID: 18529177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging of tumor vasculature using Twente photoacoustic systems.
    Jose J; Manohar S; Kolkman RG; Steenbergen W; van Leeuwen TG
    J Biophotonics; 2009 Dec; 2(12):701-17. PubMed ID: 19718681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative multispectral photoacoustic tomography and wavelength optimization.
    Xiao J; Yuan Z; He J; Jiang H
    J Xray Sci Technol; 2010; 18(4):415-27. PubMed ID: 21045278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels.
    Sivaramakrishnan M; Maslov K; Zhang HF; Stoica G; Wang LV
    Phys Med Biol; 2007 Mar; 52(5):1349-61. PubMed ID: 17301459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A near-infrared calibration method suitable for quantification of broadband data in humans.
    Zhang Q; Srinivasan S; Wu Y; Natah S; Dunn JF
    J Neurosci Methods; 2010 May; 188(2):181-6. PubMed ID: 20156483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy.
    Boas DA; Dale AM; Franceschini MA
    Neuroimage; 2004; 23 Suppl 1():S275-88. PubMed ID: 15501097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy.
    Vignal C; Boumans T; Montcel B; Ramstein S; Verhoye M; Van Audekerke J; Mathevon N; Van der Linden A; Mottin S
    Phys Med Biol; 2008 May; 53(10):2457-70. PubMed ID: 18424882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.
    Guo Z; Favazza C; Garcia-Uribe A; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):066011. PubMed ID: 22734767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hyperspectral imaging: a new approach to the diagnosis of hemorrhagic shock.
    Cancio LC; Batchinsky AI; Mansfield JR; Panasyuk S; Hetz K; Martini D; Jordan BS; Tracey B; Freeman JE
    J Trauma; 2006 May; 60(5):1087-95. PubMed ID: 16688075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of oxygen saturation measurements in a canine model of hemoglobin based oxygen carrier (HBOC) infusion.
    Jahr JS; Lurie F; Driessen B; Tang Z; Louie RF; Kullar R; Kost G
    Clin Lab Sci; 2000; 13(2):173-9. PubMed ID: 14989329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.