BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 1718332)

  • 21. The use of early sea urchin embryos in anticancer drug testing.
    Nishioka D; Marcell V; Cunningham M; Khan M; Von Hoff DD; Izbicka E
    Methods Mol Med; 2003; 85():265-76. PubMed ID: 12710214
    [No Abstract]   [Full Text] [Related]  

  • 22. Mathematical model for early development of the sea urchin embryo.
    Ciliberto A; Tyson JJ
    Bull Math Biol; 2000 Jan; 62(1):37-59. PubMed ID: 10824420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the sea urchin major vault protein: a possible role for vault ribonucleoprotein particles in nucleocytoplasmic transport.
    Hamill DR; Suprenant KA
    Dev Biol; 1997 Oct; 190(1):117-28. PubMed ID: 9331335
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclin E and its associated cdk activity do not cycle during early embryogenesis of the sea Urchin.
    Sumerel JL; Moore JC; Schnackenberg BJ; Nichols JA; Canman JC; Wessel GM; Marzluff WF
    Dev Biol; 2001 Jun; 234(2):425-40. PubMed ID: 11397011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subcellular trafficking of the nuclear receptor COUP-TF in the early embryonic cell cycle.
    Vlahou A; Flytzanis CN
    Dev Biol; 2000 Feb; 218(2):284-98. PubMed ID: 10656770
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The quantity of nucleolar proteins nucleolin and protein B23 is related to cell doubling time in human cancer cells.
    Derenzini M; Sirri V; Trerè D; Ochs RL
    Lab Invest; 1995 Oct; 73(4):497-502. PubMed ID: 7474921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell polarity emerges at first cleavage in sea urchin embryos.
    Alford LM; Ng MM; Burgess DR
    Dev Biol; 2009 Jun; 330(1):12-20. PubMed ID: 19298809
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new G-stretch-DNA-binding protein, Unichrom, displays cell-cycle-dependent expression in sea urchin embryos.
    Moritani K; Tagashira H; Shimotori T; Sakamoto N; Tanaka S; Takata K; Mitsunaga-Nakatsubo K; Bojiiwa Y; Yamamoto T; Shimada H; Akasaka K
    Dev Growth Differ; 2004 Aug; 46(4):335-41. PubMed ID: 15367201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo.
    Sciarrino S; Matranga V
    Cell Biol Int; 1995 Aug; 19(8):675-80. PubMed ID: 7550075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of antimediator preparations on the intercellular relations in early embryos of the sea urchin].
    Buznikov GA; Shmukler IuB
    Ontogenez; 1978; 9(2):173-8. PubMed ID: 25400
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The silver-stained NOR and argentophilic nuclear proteins in early mouse embryogenesis: a cytological study.
    Dyban AP; Severova EL; Zatsepina OV; Chentsov YS
    Cell Differ Dev; 1990 Mar; 29(3):165-79. PubMed ID: 1693542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Plasma membrane proteins of embryo cells of various sea urchin species and hybrid embryo].
    Chuguev IaP; Strongin AIa; Sova VV
    Biokhimiia; 1976 Nov; 41(11):1978-82. PubMed ID: 1022268
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorpropham [isopropyl N-(3-chlorophenyl) carbamate] disrupts microtubule organization, cell division, and early development of sea urchin embryos.
    Holy J
    J Toxicol Environ Health A; 1998 Jun; 54(4):319-33. PubMed ID: 9638902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pseudopterosin A on cell division, cell cycle progression, DNA, and protein synthesis in cultured sea urchin embryos.
    Ettouati WS; Jacobs RS
    Mol Pharmacol; 1987 May; 31(5):500-5. PubMed ID: 3574294
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The action of catecholamine-synthesis inhibitors and of spiperone on sea urchin and mouse embryos].
    Markova LN; Sakharova NIu; Bezuglov VV
    Ontogenez; 2000; 31(1):32-9. PubMed ID: 10732361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciliation: A stressful event for Paracentrotus lividus embryos.
    Casano C; Roccheri MC; Onorato K; Cascino D; Gianguzza F
    Biochem Biophys Res Commun; 1998 Jul; 248(3):628-34. PubMed ID: 9703977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium induces the expression of specific stress proteins in sea urchin embryos.
    Roccheri MC; Agnello M; Bonaventura R; Matranga V
    Biochem Biophys Res Commun; 2004 Aug; 321(1):80-7. PubMed ID: 15358218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective inhibition of cytokinesis in sea urchin embryos by the marine natural product pseudopterolide.
    Grace KJ; Medina M; Jacobs RS; Wilson L
    Mol Pharmacol; 1992 Apr; 41(4):631-8. PubMed ID: 1569918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protease-insensitive sea urchin embryo cell adhesions become protease sensitive in the presence of azide or cytochalasin B.
    Bertolini DR; Watanabe M; Turner RS
    J Supramol Struct Cell Biochem; 1981; 15(4):327-33. PubMed ID: 7028996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos.
    Manuel Dominguez J; Paiement J
    Am J Anat; 1989 Sep; 186(1):99-113. PubMed ID: 2782291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.