These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 17183539)
1. Compensatory and transneuronal plasticity after early collicular ablation. Dunlop SA; Rodger J; Beazley LD J Comp Neurol; 2007 Feb; 500(6):1117-26. PubMed ID: 17183539 [TBL] [Abstract][Full Text] [Related]
2. Kainic acid intraocular injections during the postnatal critical period induce plastic changes in the visual system. Pérez-Rico C; de la Villa P; Reinoso-Suárez F; Gómez-Ramos P Neurosci Res; 2009 Apr; 63(4):244-50. PubMed ID: 19167438 [TBL] [Abstract][Full Text] [Related]
3. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection. Xiong M; Pallas SL; Lim S; Finlay BL J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893 [TBL] [Abstract][Full Text] [Related]
4. Injury to retinal ganglion cell axons increases polysialylated neural cell adhesion molecule (PSA-NCAM) in the adult rodent superior colliculus. Murphy JA; Nickerson PE; Clarke DB Brain Res; 2007 Aug; 1163():21-32. PubMed ID: 17631281 [TBL] [Abstract][Full Text] [Related]
5. Development of abnormal recrossing retinotectal projections after superior colliculus lesions in newborn Syrian hamsters. So KF J Comp Neurol; 1979 Jul; 186(2):241-57. PubMed ID: 447883 [TBL] [Abstract][Full Text] [Related]
6. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii). Marotte LR J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568 [TBL] [Abstract][Full Text] [Related]
7. Matrix metalloproteinase-9 is involved in the development and plasticity of retinotectal projections in rats. Oliveira-Silva P; Jurgilas PB; Trindade P; Campello-Costa P; Perales J; Savino W; Serfaty CA Neuroimmunomodulation; 2007; 14(3-4):144-9. PubMed ID: 18073506 [TBL] [Abstract][Full Text] [Related]
8. Regulation of GDNF and its receptor components GFR-alpha1, -alpha2 and Ret during development and in the mature retino-collicular pathway. Kretz A; Jacob AM; Tausch S; Straten G; Isenmann S Brain Res; 2006 May; 1090(1):1-14. PubMed ID: 16650834 [TBL] [Abstract][Full Text] [Related]
9. Developmental changes in the pattern of retinal projections in pigmented and albino rabbits. Gayer NS; Horsburgh GM; Dreher B Brain Res Dev Brain Res; 1989 Nov; 50(1):33-54. PubMed ID: 2582607 [TBL] [Abstract][Full Text] [Related]
10. Retinal projections to the superior colliculus and dorsal lateral geniculate nucleus in the tammar wallaby (Macropus eugenii): II. Topography after rotation of an eye prior to retinal innervation of the brain. Marotte LR; Mark RF J Comp Neurol; 1988 May; 271(2):274-92. PubMed ID: 3379165 [TBL] [Abstract][Full Text] [Related]
11. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata. Dunlop SA; Tee LB; Lund RD; Beazley LD J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538 [TBL] [Abstract][Full Text] [Related]
12. Bifurcating projections from the retinal ganglion cells to the primary visual targets (SC and LGN) in the cat. Dong K; Qu T; Ahmed AK; Guison NG; Yamada K; Sugioka K; Yamadori T Kobe J Med Sci; 1995 Dec; 41(6):221-34. PubMed ID: 8869008 [TBL] [Abstract][Full Text] [Related]
13. Generation and death of cells in the dorsal lateral geniculate nucleus and superior colliculus of the wallaby, Setonix brachyurus (quokka). Harman AM J Comp Neurol; 1991 Nov; 313(3):469-78. PubMed ID: 1770170 [TBL] [Abstract][Full Text] [Related]
14. Excess target-derived brain-derived neurotrophic factor preserves the transient uncrossed retinal projection to the superior colliculus. Isenmann S; Cellerino A; Gravel C; Bähr M Mol Cell Neurosci; 1999 Jul; 14(1):52-65. PubMed ID: 10433817 [TBL] [Abstract][Full Text] [Related]
15. Eph/ephrin expression in the adult rat visual system following localized retinal lesions: localized and transneuronal up-regulation in the retina and superior colliculus. Rodger J; Symonds AC; Springbett J; Shen WY; Bartlett CA; Rakoczy PE; Beazley LD; Dunlop SA Eur J Neurosci; 2005 Oct; 22(8):1840-52. PubMed ID: 16262624 [TBL] [Abstract][Full Text] [Related]
16. Retinal ganglion cell neurotrophin receptor levels and trophic requirements following target ablation in the neonatal rat. Spalding KL; Cui Q; Harvey AR Neuroscience; 2005; 131(2):387-95. PubMed ID: 15708481 [TBL] [Abstract][Full Text] [Related]
17. Ephrin-A2 and -A5 influence patterning of normal and novel retinal projections to the thalamus: conserved mapping mechanisms in visual and auditory thalamic targets. Ellsworth CA; Lyckman AW; Feldheim DA; Flanagan JG; Sur M J Comp Neurol; 2005 Jul; 488(2):140-51. PubMed ID: 15924339 [TBL] [Abstract][Full Text] [Related]
18. The accessory optic system of the wallaby, Setonix brachyurus: anatomy in normal animals and after early unilateral eye removal. Coleman LA; Beazley LD J Comp Neurol; 1988 Jul; 273(3):359-76. PubMed ID: 2463278 [TBL] [Abstract][Full Text] [Related]
19. Multisensory orientation behavior is disrupted by neonatal cortical ablation. Jiang W; Jiang H; Rowland BA; Stein BE J Neurophysiol; 2007 Jan; 97(1):557-62. PubMed ID: 16971678 [TBL] [Abstract][Full Text] [Related]
20. Reinnervation of the superior colliculus delays down-regulation of ephrin A2 in neonatal rat. Symonds AC; Rodger J; Tan MM; Dunlop SA; Beazley LD; Harvey AR Exp Neurol; 2001 Aug; 170(2):364-70. PubMed ID: 11476602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]