BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 17183702)

  • 1. Catalases are NAD(P)H-dependent tellurite reductases.
    Calderón IL; Arenas FA; Pérez JM; Fuentes DE; Araya MA; Saavedra CP; Tantaleán JC; Pichuantes SE; Youderian PA; Vásquez CC
    PLoS One; 2006 Dec; 1(1):e70. PubMed ID: 17183702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12.
    Tantaleán JC; Araya MA; Saavedra CP; Fuentes DE; Pérez JM; Calderón IL; Youderian P; Vásquez CC
    J Bacteriol; 2003 Oct; 185(19):5831-7. PubMed ID: 13129955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH.
    Kirkman HN; Gaetani GF
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4343-7. PubMed ID: 6589599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH binding and control of catalase compound II formation: comparison of bovine, yeast, and Escherichia coli enzymes.
    Hillar A; Nicholls P; Switala J; Loewen PC
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):531-9. PubMed ID: 8002960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distal site aspartate is essential in the catalase activity of catalase-peroxidases.
    Jakopitsch C; Auer M; Regelsberger G; Jantschko W; Furtmüller PG; Rüker F; Obinger C
    Biochemistry; 2003 May; 42(18):5292-300. PubMed ID: 12731870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases.
    Haas A; Brehm K; Kreft J; Goebel W
    J Bacteriol; 1991 Aug; 173(16):5159-67. PubMed ID: 1860824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite.
    Avazéri C; Turner RJ; Pommier J; Weiner JH; Giordano G; Verméglio A
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1181-1189. PubMed ID: 9141681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase.
    Olson LP; Bruice TC
    Biochemistry; 1995 Jun; 34(22):7335-47. PubMed ID: 7779776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tellurite-resistance determinants tehAtehB and klaAklaBtelB have different biochemical requirements.
    Turner RJ; Weiner JH; Taylor DE
    Microbiology (Reading); 1995 Dec; 141 ( Pt 12)():3133-40. PubMed ID: 8574407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the lateral channel in catalase HPII of Escherichia coli.
    Sevinc MS; Maté MJ; Switala J; Fita I; Loewen PC
    Protein Sci; 1999 Mar; 8(3):490-8. PubMed ID: 10091651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia.
    Rister M; Baehner RL
    J Clin Invest; 1976 Nov; 58(5):1174-84. PubMed ID: 825533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tellurite-mediated thiol oxidation in Escherichia coli.
    Turner RJ; Weiner JH; Taylor DE
    Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2549-2557. PubMed ID: 10517608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase.
    Obinger C; Maj M; Nicholls P; Loewen P
    Arch Biochem Biophys; 1997 Jun; 342(1):58-67. PubMed ID: 9185614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of phlorizin, a potent inhibitor of the Na+/D-glucose cotransporter, with the NADPH-binding site of mammalian catalases.
    Kitlar T; Döring F; Diedrich DF; Frank R; Wallmeier H; Kinne RK; Deutscher J
    Protein Sci; 1994 Apr; 3(4):696-700. PubMed ID: 8003987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo and in vitro cloning and phenotype characterization of tellurite resistance determinant conferred by plasmid pTE53 of a clinical isolate of Escherichia coli.
    Burian J; Tu N; Kl'ucár L; Guller L; Lloyd-Jones G; Stuchlík S; Fejdi P; Siekel P; Turna J
    Folia Microbiol (Praha); 1998; 43(6):589-99. PubMed ID: 10069007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-surface NAD(P)H-oxidase: relationship to trans-plasma membrane NADH-oxidoreductase and a potential source of circulating NADH-oxidase.
    Berridge MV; Tan AS
    Antioxid Redox Signal; 2000; 2(2):277-88. PubMed ID: 11229532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation and intracellular fate of tellurite in tellurite-resistant Escherichia coli: a model for the mechanism of resistance.
    Lloyd-Jones G; Osborn AM; Ritchie DA; Strike P; Hobman JL; Brown NL; Rouch DA
    FEMS Microbiol Lett; 1994 May; 118(1-2):113-9. PubMed ID: 8013866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo 31P nuclear magnetic resonance investigation of tellurite toxicity in Escherichia coli.
    Lohmeier-Vogel EM; Ung S; Turner RJ
    Appl Environ Microbiol; 2004 Dec; 70(12):7342-7. PubMed ID: 15574934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NADPH binding site on beef liver catalase.
    Fita I; Rossmann MG
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1604-8. PubMed ID: 3856839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overproduction of peroxide-scavenging enzymes in Escherichia coli suppresses spontaneous mutagenesis and sensitivity to redox-cycling agents in oxyR-mutants.
    Greenberg JT; Demple B
    EMBO J; 1988 Aug; 7(8):2611-7. PubMed ID: 2847922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.