These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 17184331)

  • 1. Both sulfate-reducing bacteria and Enterobacteriaceae take part in marine biocorrosion of carbon steel.
    Bermont-Bouis D; Janvier M; Grimont PA; Dupont I; Vallaeys T
    J Appl Microbiol; 2007 Jan; 102(1):161-8. PubMed ID: 17184331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico.
    Neria-González I; Wang ET; Ramírez F; Romero JM; Hernández-Rodríguez C
    Anaerobe; 2006 Jun; 12(3):122-33. PubMed ID: 16765858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic and functional diversity of bacteria in biofilms from metal surfaces of an alkaline district heating system.
    Kjeldsen KU; Kjellerup BV; Egli K; Frølund B; Nielsen PH; Ingvorsen K
    FEMS Microbiol Ecol; 2007 Aug; 61(2):384-97. PubMed ID: 17651138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines.
    Rajasekar A; Anandkumar B; Maruthamuthu S; Ting YP; Rahman PK
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1175-88. PubMed ID: 19844704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic analysis of a biofilm bacterial population in a water pipeline in the Gulf of Mexico.
    López MA; Zavala-Díaz de la Serna FJ; Jan-Roblero J; Romero JM; Hernández-Rodríguez C
    FEMS Microbiol Ecol; 2006 Oct; 58(1):145-54. PubMed ID: 16958915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic characterization of a corrosive consortium isolated from a sour gas pipeline.
    Jan-Roblero J; Romero JM; Amaya M; Le Borgne S
    Appl Microbiol Biotechnol; 2004 Jun; 64(6):862-7. PubMed ID: 15107951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena.
    Boudaud N; Coton M; Coton E; Pineau S; Travert J; Amiel C
    J Appl Microbiol; 2010 Jul; 109(1):166-79. PubMed ID: 20059620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.
    Rubio C; Ott C; Amiel C; Dupont-Moral I; Travert J; Mariey L
    J Microbiol Methods; 2006 Mar; 64(3):287-96. PubMed ID: 16176842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methanogen population in a marine biofilm corrosive to mild steel.
    Zhang T; Fang HH; Ko BC
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):101-6. PubMed ID: 12879307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial community structure, compartmentalization and activity in a microbial fuel cell.
    Kim GT; Webster G; Wimpenny JW; Kim BH; Kim HJ; Weightman AJ
    J Appl Microbiol; 2006 Sep; 101(3):698-710. PubMed ID: 16907820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters.
    Dang H; Chen R; Wang L; Shao S; Dai L; Ye Y; Guo L; Huang G; Klotz MG
    Environ Microbiol; 2011 Nov; 13(11):3059-74. PubMed ID: 21951343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific variation in Antarctic marine biofilms established on artificial surfaces.
    Webster NS; Negri AP
    Environ Microbiol; 2006 Jul; 8(7):1177-90. PubMed ID: 16817926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Taxonomic position of certain representatives of sulphate-reducing corrosive microbial community].
    Asaulenko LH; Abdulina DR; Purish LM
    Mikrobiol Z; 2010; 72(4):3-10. PubMed ID: 20812503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocorrosion and biofilm formation in a nutrient limited heating system subjected to alternating microaerophilic conditions.
    Kjellerup BV; Kjeldsen KU; Lopes F; Abildgaard L; Ingvorsen K; Frølund B; Sowers KR; Nielsen PH
    Biofouling; 2009 Nov; 25(8):727-37. PubMed ID: 20183131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial diversity of mid-stage Palinurid phyllosoma from Great Barrier Reef waters.
    Payne MS; Høj L; Wietz M; Hall MR; Sly L; Bourne DG
    J Appl Microbiol; 2008 Aug; 105(2):340-50. PubMed ID: 18298531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism.
    Lopes FA; Morin P; Oliveira R; Melo LF
    J Appl Microbiol; 2006 Nov; 101(5):1087-95. PubMed ID: 17040232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate-reducing bacterial community structure and their contribution to carbon mineralization in a wastewater biofilm growing under microaerophilic conditions.
    Okabe S; Ito T; Satoh H
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):322-34. PubMed ID: 12879306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial structure and community of RBC biofilm removing nitrate and phosphorus from domestic wastewater.
    Lee H; Choi E; Yun Z; Park YK
    J Microbiol Biotechnol; 2008 Aug; 18(8):1459-69. PubMed ID: 18756109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial diversity in biofilms from corroding heating systems.
    Kjellerup BV; Thomsen TR; Nielsen JL; Olesen BH; Frølund B; Nielsen PH
    Biofouling; 2005; 21(1):19-29. PubMed ID: 16019388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.