These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17184338)

  • 1. Enhanced degradation and toxicity reduction of dihexyl phthalate by Fusarium oxysporum f. sp. pisi cutinase.
    Kim YH; Seo HS; Min J; Kim YC; Ban YH; Han KY; Park JS; Bae KD; Gu MB; Lee J
    J Appl Microbiol; 2007 Jan; 102(1):221-8. PubMed ID: 17184338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated degradation of dipentyl phthalate by Fusarium oxysporum f. sp. pisi cutinase and toxicity evaluation of its degradation products using bioluminescent bacteria.
    Ahn JY; Kim YH; Min J; Lee J
    Curr Microbiol; 2006 May; 52(5):340-4. PubMed ID: 16586026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of dipropyl phthalate and toxicity of its degradation products: a comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase.
    Kim YH; Min J; Bae KD; Gu MB; Lee J
    Arch Microbiol; 2005 Oct; 184(1):25-31. PubMed ID: 16059706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase.
    Kim YH; Lee J; Moon SH
    Appl Microbiol Biotechnol; 2003 Nov; 63(1):75-80. PubMed ID: 12750855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase.
    Kim YH; Ahn JY; Moon SH; Lee J
    Chemosphere; 2005 Sep; 60(10):1349-55. PubMed ID: 16054903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced degradation of an endocrine-disrupting chemical, butyl benzyl phthalate, by Fusarium oxysporum f. sp. pisi cutinase.
    Kim YH; Lee J; Ahn JY; Gu MB; Moon SH
    Appl Environ Microbiol; 2002 Sep; 68(9):4684-8. PubMed ID: 12200333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic degradation of dibutyl phthalate and toxicity of its degradation products.
    Kim YH; Lee J
    Biotechnol Lett; 2005 May; 27(9):635-9. PubMed ID: 15977070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase.
    Shi K; Jing J; Song L; Su T; Wang Z
    Int J Biol Macromol; 2020 Feb; 144():183-189. PubMed ID: 31843602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusarium polycaprolactone depolymerase is cutinase.
    Murphy CA; Cameron JA; Huang SJ; Vinopal RT
    Appl Environ Microbiol; 1996 Feb; 62(2):456-60. PubMed ID: 8593048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation patterns of the endocrine disrupting pollutant di(2-ethyl hexyl) phthalate by Fusarium culmorum.
    González-Márquez A; Loera-Corral O; Santacruz-Juárez E; Tlécuitl-Beristain S; García-Dávila J; Viniegra-González G; Sánchez C
    Ecotoxicol Environ Saf; 2019 Apr; 170():293-299. PubMed ID: 30530181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic hydrolysis of structurally diverse phthalic acid esters by porcine and bovine pancreatic cholesterol esterases.
    Saito T; Hong P; Tanabe R; Nagai K; Kato K
    Chemosphere; 2010 Dec; 81(11):1544-8. PubMed ID: 20822795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation.
    González-Márquez A; Volke-Sepulveda T; Díaz R; Sánchez C
    J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34529076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase.
    Matamá T; Vaz F; Gübitz GM; Cavaco-Paulo A
    Biotechnol J; 2006; 1(7-8):842-9. PubMed ID: 16927260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent.
    Martinez C; De Geus P; Lauwereys M; Matthyssens G; Cambillau C
    Nature; 1992 Apr; 356(6370):615-8. PubMed ID: 1560844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining metabolomics with bioanalysis methods to investigate the potential toxicity of dihexyl phthalate.
    Song D; Xu C; Holck AL; Liu R
    Environ Toxicol; 2021 Feb; 36(2):213-222. PubMed ID: 33043605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cutinase gene disruption in Fusarium solani f sp pisi decreases its virulence on pea.
    Rogers LM; Flaishman MA; Kolattukudy PE
    Plant Cell; 1994 Jul; 6(7):935-45. PubMed ID: 8069105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis of diethylpyrocarbonate, a commonly used histidine modifying agent, by esterases.
    Foster RJ; Kolattukudy PE
    Int J Biochem; 1987; 19(4):391-4. PubMed ID: 3595987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential.
    Dimarogona M; Nikolaivits E; Kanelli M; Christakopoulos P; Sandgren M; Topakas E
    Biochim Biophys Acta; 2015 Nov; 1850(11):2308-17. PubMed ID: 26291558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutinase is not required for fungal pathogenicity on pea.
    Stahl DJ; Schäfer W
    Plant Cell; 1992 Jun; 4(6):621-9. PubMed ID: 1392588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of Fusarium solani f. sp. pisi cutinase in Fusarium venenatum A3/5.
    Sørensen JD; Petersen EI; Wiebe MG
    Biotechnol Lett; 2007 Aug; 29(8):1227-32. PubMed ID: 17505784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.