BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17184531)

  • 1. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of elasticities, concentration and flux control coefficients from transient metabolite data using linlog kinetics.
    Kresnowati MT; van Winden WA; Heijnen JJ
    Metab Eng; 2005 Mar; 7(2):142-53. PubMed ID: 15781422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a genome-scale kinetic model of cellular metabolism.
    Smallbone K; Simeonidis E; Swainston N; Mendes P
    BMC Syst Biol; 2010 Jan; 4():6. PubMed ID: 20109182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics.
    Visser D; Schmid JW; Mauch K; Reuss M; Heijnen JJ
    Metab Eng; 2004 Oct; 6(4):378-90. PubMed ID: 15491866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.
    Visser D; Heijnen JJ
    Metab Eng; 2003 Jul; 5(3):164-76. PubMed ID: 12948750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scalable method for parameter identification in kinetic models of metabolism using steady-state data.
    Srinivasan S; Cluett WR; Mahadevan R
    Bioinformatics; 2019 Dec; 35(24):5216-5225. PubMed ID: 31197317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elucidating yeast glycolytic dynamics at steady state growth and glucose pulses through kinetic metabolic modeling.
    Lao-Martil D; Schmitz JPJ; Teusink B; van Riel NAW
    Metab Eng; 2023 May; 77():128-142. PubMed ID: 36963461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Something from nothing: bridging the gap between constraint-based and kinetic modelling.
    Smallbone K; Simeonidis E; Broomhead DS; Kell DB
    FEBS J; 2007 Nov; 274(21):5576-85. PubMed ID: 17922843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics.
    Wu L; Wang W; van Winden WA; van Gulik WM; Heijnen JJ
    Eur J Biochem; 2004 Aug; 271(16):3348-59. PubMed ID: 15291812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating parameters for generalized mass action models with connectivity information.
    Ko CL; Voit EO; Wang FS
    BMC Bioinformatics; 2009 May; 10():140. PubMed ID: 19432964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-linear reduction for kinetic models of metabolic reaction networks.
    Gerdtzen ZP; Daoutidis P; Hu WS
    Metab Eng; 2004 Apr; 6(2):140-54. PubMed ID: 15113567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining elasticities from multiple measurements of flux rates and metabolite concentrations. Application of the multiple modulation method to a reconstituted pathway.
    Giersch C
    Eur J Biochem; 1995 Jan; 227(1-2):194-201. PubMed ID: 7851386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full-scale model of glycolysis in Saccharomyces cerevisiae.
    Hynne F; Danø S; Sørensen PG
    Biophys Chem; 2001 Dec; 94(1-2):121-63. PubMed ID: 11744196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic control analysis under uncertainty: framework development and case studies.
    Wang L; Birol I; Hatzimanikatis V
    Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter estimation in models combining signal transduction and metabolic pathways: the dependent input approach.
    van Riel NA; Sontag ED
    Syst Biol (Stevenage); 2006 Jul; 153(4):263-74. PubMed ID: 16986628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streamlining the construction of large-scale dynamic models using generic kinetic equations.
    Adiamah DA; Handl J; Schwartz JM
    Bioinformatics; 2010 May; 26(10):1324-31. PubMed ID: 20363732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.