BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17184809)

  • 1. Dopaminergic modulation and rod contribution in the generation of oscillatory potentials in the tiger salamander retina.
    Perry B; George JS
    Vision Res; 2007 Feb; 47(3):309-14. PubMed ID: 17184809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracer coupling between fish rod horizontal cells: modulation by light and dopamine but not the retinal circadian clock.
    Ribelayga C; Mangel SC
    Vis Neurosci; 2007; 24(3):333-44. PubMed ID: 17640444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of circadian clock regulation of horizontal cell gap junctional coupling reveals two dopamine systems in the goldfish retina.
    Ribelayga C; Mangel SC
    J Comp Neurol; 2003 Dec; 467(2):243-53. PubMed ID: 14595771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs.
    Witkovsky P; Stone S; Tranchina D
    J Neurophysiol; 1989 Oct; 62(4):864-81. PubMed ID: 2530319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelength and intensity dependence of retinal evoked responses using in vivo optic nerve recording.
    Finn WE; LoPresti PG
    IEEE Trans Neural Syst Rehabil Eng; 2003 Dec; 11(4):372-6. PubMed ID: 14960112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the functional significance of primate retinal dopamine receptors.
    Bodis-Wollner I; Antal A
    J Neural Transm Suppl; 1995; 45():67-74. PubMed ID: 8748611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic inputs from rods and cones to horizontal cells in the tiger salamander retina.
    Yang XL; Wu SM
    Sci China B; 1990 Aug; 33(8):946-54. PubMed ID: 2242218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopaminergic modulation of photopic temporal transfer properties in goldfish retina investigated with the ERG.
    Mora-Ferrer C; Behrend K
    Vision Res; 2004; 44(17):2067-81. PubMed ID: 15149838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal transmission from cones to amacrine cells in dark- and light-adapted tiger salamander retina.
    Yang XL; Wu SM
    Brain Res; 2004 Dec; 1029(2):155-61. PubMed ID: 15542069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V; Valter K; Stone J
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3017-23. PubMed ID: 19182251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential modulation of rod and cone calcium currents in tiger salamander retina by D2 dopamine receptors and cAMP.
    Stella SL; Thoreson WB
    Eur J Neurosci; 2000 Oct; 12(10):3537-48. PubMed ID: 11029623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related changes in the tiger salamander retina.
    Townes-Anderson E; Colantonio A; St Jules RS
    Exp Eye Res; 1998 May; 66(5):653-67. PubMed ID: 9631666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping cone- and rod-induced retinal responsiveness in macaque retina by optical imaging.
    Tsunoda K; Oguchi Y; Hanazono G; Tanifuji M
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3820-6. PubMed ID: 15452094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D2-like dopamine receptors promote interactions between calcium and chloride channels that diminish rod synaptic transfer in the salamander retina.
    Thoreson WB; Stella SL; Bryson EI; Clements J; Witkovsky P
    Vis Neurosci; 2002; 19(3):235-47. PubMed ID: 12392173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet light-induced and green light-induced transient pupillary light reflex in mice.
    Yao G; Zhang K; Bellassai M; Chang B; Lei B
    Curr Eye Res; 2006 Nov; 31(11):925-33. PubMed ID: 17114118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sign-preserving and sign-inverting synaptic interactions between rod and cone photoreceptors in the dark-adapted retina.
    Gao F; Pang JJ; Wu SM
    J Physiol; 2013 Nov; 591(22):5711-26. PubMed ID: 24000179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of dopamine receptor blockade on the intensity-response function of ERG b- and d-waves in dark adapted eyes.
    Popova E; Kupenova P
    Vision Res; 2013 Aug; 88():22-9. PubMed ID: 23810982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.