BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 17184812)

  • 1. Dynamics of drinking water biofilm in flow/non-flow conditions.
    Manuel CM; Nunes OC; Melo LF
    Water Res; 2007 Feb; 41(3):551-62. PubMed ID: 17184812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mycobacterium marinum biofilm formation reveals cording morphology.
    Hall-Stoodley L; Brun OS; Polshyna G; Barker LP
    FEMS Microbiol Lett; 2006 Apr; 257(1):43-9. PubMed ID: 16553830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drinking water biofilm assessment of total and culturable bacteria under different operating conditions.
    Simões LC; Azevedo N; Pacheco A; Keevil CW; Vieira MJ
    Biofouling; 2006; 22(1-2):91-9. PubMed ID: 16581673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contamination potential of drinking water distribution network biofilms.
    Wingender J; Flemming HC
    Water Sci Technol; 2004; 49(11-12):277-86. PubMed ID: 15303752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofilm formation and multiplication of Legionella in a model warm water system with pipes of copper, stainless steel and cross-linked polyethylene.
    van der Kooij D; Veenendaal HR; Scheffer WJ
    Water Res; 2005 Aug; 39(13):2789-98. PubMed ID: 16019051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology and behavior of Pseudomonas fluorescens single and dual strain biofilms under diverse hydrodynamics stresses.
    Simões M; Simões LC; Vieira MJ
    Int J Food Microbiol; 2008 Dec; 128(2):309-16. PubMed ID: 18951643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of wall shear rate on biofilm deposition and grazing in drinking water flow chambers.
    Paris T; Skali-Lami S; Block JC
    Biotechnol Bioeng; 2007 Aug; 97(6):1550-61. PubMed ID: 17216655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water.
    Xia S; Zhang Y; Zhong F
    Bioresour Technol; 2009 Dec; 100(24):6223-8. PubMed ID: 19656675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions.
    Horn H; Reiff H; Morgenroth E
    Biotechnol Bioeng; 2003 Mar; 81(5):607-17. PubMed ID: 12514810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of biofilm formation at different assimilable organic carbon concentrations under lower flow velocity condition.
    Tsai YP
    J Basic Microbiol; 2005; 45(6):475-85. PubMed ID: 16304710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water.
    Manuel CM; Nunes OC; Melo LF
    Biofouling; 2010; 26(2):129-39. PubMed ID: 19859848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of biofilm-forming abilities of antibiotic-resistant Salmonella typhimurium DT104 on hydrophobic abiotic surfaces.
    Ngwai YB; Adachi Y; Ogawa Y; Hara H
    J Microbiol Immunol Infect; 2006 Aug; 39(4):278-91. PubMed ID: 16926973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of flow regimes on the presence of Legionella within the biofilm of a model plumbing system.
    Liu Z; Lin YE; Stout JE; Hwang CC; Vidic RD; Yu VL
    J Appl Microbiol; 2006 Aug; 101(2):437-42. PubMed ID: 16882152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of discontinuous chlorination on microbial production by drinking water biofilms.
    Codony F; Morató J; Mas J
    Water Res; 2005 May; 39(9):1896-906. PubMed ID: 15899288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of changing water flow velocity on the formation of biofilms and water quality in pilot distribution system consisting of copper or polyethylene pipes.
    Lehtola MJ; Laxander M; Miettinen IT; Hirvonen A; Vartiainen T; Martikainen PJ
    Water Res; 2006 Jun; 40(11):2151-60. PubMed ID: 16725175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of phosphorus on biofilm formation in model drinking water distribution systems.
    Fang W; Hu JY; Ong SL
    J Appl Microbiol; 2009 Apr; 106(4):1328-35. PubMed ID: 19187141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm bacteria inactivation by citric acid and resuspension evaluations for drinking water production systems.
    Tsai YP; Pai TY; Hsin JY; Wan TJ
    Water Sci Technol; 2003; 48(11-12):463-72. PubMed ID: 14753569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of flow velocity on the dynamic behaviour of biofilm bacteria.
    Tsai YP
    Biofouling; 2005; 21(5-6):267-77. PubMed ID: 16522540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple system for biofilm potential monitoring in drinking water.
    Delahaye E; Levi Y; Leblon G; Montiel A
    J Basic Microbiol; 2006; 46(1):22-7. PubMed ID: 16463314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.