These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17185174)

  • 1. Powers of multiple-testing procedures for identification of genes significantly differentially expressed in microarray experiments.
    Tan YD; Yan HM
    Yi Chuan Xue Bao; 2006 Dec; 33(12):1132-40. PubMed ID: 17185174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis.
    Nettleton D; Recknor J; Reecy JM
    Bioinformatics; 2008 Jan; 24(2):192-201. PubMed ID: 18042553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased power of microarray analysis by use of an algorithm based on a multivariate procedure.
    Krohn K; Eszlinger M; Paschke R; Roeder I; Schuster E
    Bioinformatics; 2005 Sep; 21(17):3530-4. PubMed ID: 15998661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting differentially expressed genes by relative entropy.
    Yan X; Deng M; Fung WK; Qian M
    J Theor Biol; 2005 Jun; 234(3):395-402. PubMed ID: 15784273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EVE (external variance estimation) increases statistical power for detecting differentially expressed genes.
    Wille A; Gruissem W; Bühlmann P; Hennig L
    Plant J; 2007 Nov; 52(3):561-9. PubMed ID: 17680783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sample size calculation for multiple testing in microarray data analysis.
    Jung SH; Bang H; Young S
    Biostatistics; 2005 Jan; 6(1):157-69. PubMed ID: 15618534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
    Gao X
    Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining multiple microarrays in the presence of controlling variables.
    Park T; Yi SG; Shin YK; Lee S
    Bioinformatics; 2006 Jul; 22(14):1682-9. PubMed ID: 16705015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross platform microarray analysis for robust identification of differentially expressed genes.
    Bosotti R; Locatelli G; Healy S; Scacheri E; Sartori L; Mercurio C; Calogero R; Isacchi A
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S5. PubMed ID: 17430572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of host response to bacterial infection using error model based gene expression microarray experiments.
    Stekel DJ; Sarti D; Trevino V; Zhang L; Salmon M; Buckley CD; Stevens M; Pallen MJ; Penn C; Falciani F
    Nucleic Acids Res; 2005 Mar; 33(6):e53. PubMed ID: 15800204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SEGS: search for enriched gene sets in microarray data.
    Trajkovski I; Lavrac N; Tolar J
    J Biomed Inform; 2008 Aug; 41(4):588-601. PubMed ID: 18234563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene profiling for determining pluripotent genes in a time course microarray experiment.
    Tuke J; Glonek GF; Solomon PJ
    Biostatistics; 2009 Jan; 10(1):80-93. PubMed ID: 18562347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of gene induction enables a relevance-based ranking of gene sets.
    Bartholomé K; Kreutz C; Timmer J
    J Comput Biol; 2009 Jul; 16(7):959-67. PubMed ID: 19580524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sample size calculations based on ranking and selection in microarray experiments.
    Matsui S; Zeng S; Yamanaka T; Shaughnessy J
    Biometrics; 2008 Mar; 64(1):217-26. PubMed ID: 17680829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating effect sizes of differentially expressed genes for power and sample-size assessments in microarray experiments.
    Matsui S; Noma H
    Biometrics; 2011 Dec; 67(4):1225-35. PubMed ID: 21627629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CLEAR-test: combining inference for differential expression and variability in microarray data analysis.
    Valls J; Grau M; Solé X; Hernández P; Montaner D; Dopazo J; Peinado MA; Capellá G; Moreno V; Pujana MA
    J Biomed Inform; 2008 Feb; 41(1):33-45. PubMed ID: 17597009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing for trends in dose-response microarray experiments: a comparison of several testing procedures, multiplicity and resampling-based inference.
    Lin D; Shkedy Z; Yekutieli D; Burzykowski T; Göhlmann HW; De Bondt A; Perera T; Geerts T; Bijnens L
    Stat Appl Genet Mol Biol; 2007; 6():Article26. PubMed ID: 18052909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance testing for small microarray experiments.
    Kooperberg C; Aragaki A; Strand AD; Olson JM
    Stat Med; 2005 Aug; 24(15):2281-98. PubMed ID: 15889452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling nonlinearity in dilution design microarray data.
    Zheng X; Huang HC; Li W; Liu P; Li QZ; Liu Y
    Bioinformatics; 2007 Jun; 23(11):1339-47. PubMed ID: 17237040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model selection in a global analysis of a microarray experiment.
    Díaz C; Moreno-Sánchez N; Rueda J; Reverter A; Wang YH; Carabaño MJ
    J Anim Sci; 2009 Jan; 87(1):88-98. PubMed ID: 18849384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.