These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 17185319)
1. Regulation of redox metabolism in the mouse oocyte and embryo. Dumollard R; Ward Z; Carroll J; Duchen MR Development; 2007 Feb; 134(3):455-65. PubMed ID: 17185319 [TBL] [Abstract][Full Text] [Related]
2. Mitochondrial function and redox state in mammalian embryos. Dumollard R; Carroll J; Duchen MR; Campbell K; Swann K Semin Cell Dev Biol; 2009 May; 20(3):346-53. PubMed ID: 19530278 [TBL] [Abstract][Full Text] [Related]
3. Glucose metabolism in mouse cumulus cells prevents oocyte aging by maintaining both energy supply and the intracellular redox potential. Li Q; Miao DQ; Zhou P; Wu YG; Gao D; Wei DL; Cui W; Tan JH Biol Reprod; 2011 Jun; 84(6):1111-8. PubMed ID: 21270427 [TBL] [Abstract][Full Text] [Related]
4. Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo. Lane M; Gardner DK Biol Reprod; 2000 Jan; 62(1):16-22. PubMed ID: 10611062 [TBL] [Abstract][Full Text] [Related]
5. Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference. Xie HL; Zhu S; Zhang J; Wen J; Yuan HJ; Pan LZ; Luo MJ; Tan JH J Cell Physiol; 2018 Sep; 233(9):6952-6964. PubMed ID: 29336483 [TBL] [Abstract][Full Text] [Related]
6. Pyruvate improves deleterious effects of high glucose on activation of pentose phosphate pathway and glutathione redox cycle in endothelial cells. Kashiwagi A; Nishio Y; Asahina T; Ikebuchi M; Harada N; Tanaka Y; Takahara N; Taki H; Obata T; Hidaka H; Saeki Y; Kikkawa R Diabetes; 1997 Dec; 46(12):2088-95. PubMed ID: 9392501 [TBL] [Abstract][Full Text] [Related]
7. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells. Circu ML; Maloney RE; Aw TY Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422 [TBL] [Abstract][Full Text] [Related]
8. Metabolism, protein content, and in vitro embryonic development of goat cumulus-oocyte complexes matured with physiological concentrations of glucose and L-lactate. Herrick JR; Lane M; Gardner DK; Behboodi E; Memili E; Blash S; Echelard Y; Krisher RL Mol Reprod Dev; 2006 Feb; 73(2):256-66. PubMed ID: 16250005 [TBL] [Abstract][Full Text] [Related]
9. The redox switch/redox coupling hypothesis. Cerdán S; Rodrigues TB; Sierra A; Benito M; Fonseca LL; Fonseca CP; García-Martín ML Neurochem Int; 2006; 48(6-7):523-30. PubMed ID: 16530294 [TBL] [Abstract][Full Text] [Related]
10. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor. Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821 [TBL] [Abstract][Full Text] [Related]
11. Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone. Sutton-McDowall ML; Purdey M; Brown HM; Abell AD; Mottershead DG; Cetica PD; Dalvit GC; Goldys EM; Gilchrist RB; Gardner DK; Thompson JG Mol Reprod Dev; 2015 Apr; 82(4):281-94. PubMed ID: 25721374 [TBL] [Abstract][Full Text] [Related]
12. Effect of epidermal growth factor-like peptides on the metabolism of in vitro- matured mouse oocytes and cumulus cells. Richani D; Sutton-McDowall ML; Frank LA; Gilchrist RB; Thompson JG Biol Reprod; 2014 Mar; 90(3):49. PubMed ID: 24451986 [TBL] [Abstract][Full Text] [Related]
13. Improved cryotolerance and developmental potential of in vitro and in vivo matured mouse oocytes by supplementing with a glutathione donor prior to vitrification. Trapphoff T; Heiligentag M; Simon J; Staubach N; Seidel T; Otte K; Fröhlich T; Arnold GJ; Eichenlaub-Ritter U Mol Hum Reprod; 2016 Dec; 22(12):867-881. PubMed ID: 27604460 [TBL] [Abstract][Full Text] [Related]
14. Effect of lactate dehydrogenase activity and isoenzyme localization in bovine oocytes and utilization of oxidative substrates on in vitro maturation. Cetica PD; Pintos LN; Dalvit GC; Beconi MT Theriogenology; 1999 Feb; 51(3):541-50. PubMed ID: 10729040 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of the oocyte and the preimplantation embryo: implications for assisted reproduction. Scott R; Zhang M; Seli E Curr Opin Obstet Gynecol; 2018 Jun; 30(3):163-170. PubMed ID: 29708901 [TBL] [Abstract][Full Text] [Related]
16. Effects of glucose metabolism pathways on nuclear and cytoplasmic maturation of pig oocytes. Wen J; Wang GL; Yuan HJ; Zhang J; Xie HL; Gong S; Han X; Tan JH Sci Rep; 2020 Feb; 10(1):2782. PubMed ID: 32066834 [TBL] [Abstract][Full Text] [Related]
17. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle. Barron JT; Sasse MF; Nair A Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713 [TBL] [Abstract][Full Text] [Related]
18. Thioredoxin-interacting protein regulates glucose metabolism and improves the intracellular redox state in bovine oocytes during in vitro maturation. Jiang X; Pang Y; Zhao S; Hao H; Zhao X; Du W; Wang Y; Zhu H Am J Physiol Endocrinol Metab; 2020 Mar; 318(3):E405-E416. PubMed ID: 31935112 [TBL] [Abstract][Full Text] [Related]
19. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes. Ogasawara Y; Funakoshi M; Ishii K Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836 [TBL] [Abstract][Full Text] [Related]