These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 17185421)
21. Cytoskeletal heart-enriched actin-associated protein (CHAP) is expressed in striated and smooth muscle cells in chick and mouse during embryonic and adult stages. van Eldik W; Beqqali A; Monshouwer-Kloots J; Mummery C; Passier R Int J Dev Biol; 2011; 55(6):649-55. PubMed ID: 21948713 [TBL] [Abstract][Full Text] [Related]
23. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. Kim-Kaneyama JR; Suzuki W; Ichikawa K; Ohki T; Kohno Y; Sata M; Nose K; Shibanuma M J Cell Sci; 2005 Mar; 118(Pt 5):937-49. PubMed ID: 15713747 [TBL] [Abstract][Full Text] [Related]
24. RE1-silencing transcription factor (REST) and REST-interacting LIM domain protein (RILP) affect P19CL6 differentiation. Shimojo M Genes Cells; 2011 Jan; 16(1):90-100. PubMed ID: 21199191 [TBL] [Abstract][Full Text] [Related]
25. Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Gan Q; Yoshida T; Li J; Owens GK Circ Res; 2007 Oct; 101(9):883-92. PubMed ID: 17823374 [TBL] [Abstract][Full Text] [Related]
26. Polyclonal antibodies to LIM proteins CRP2 and CRIP2 reveal their subcellular localizations in olfactory precursor cells. Gao X; Sun JY; Cao ZY; Lin Y; Zha DJ; Wang F; Xue T; Qiao L; Lu LJ; Qiu JH Biochemistry (Mosc); 2009 Mar; 74(3):336-41. PubMed ID: 19364329 [TBL] [Abstract][Full Text] [Related]
27. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism. Jeon ES; Moon HJ; Lee MJ; Song HY; Kim YM; Bae YC; Jung JS; Kim JH J Cell Sci; 2006 Dec; 119(Pt 23):4994-5005. PubMed ID: 17105765 [TBL] [Abstract][Full Text] [Related]
28. Y-box binding protein-1 implicated in translational control of fetal myocardial gene expression after cardiac transplant. David JJ; Subramanian SV; Zhang A; Willis WL; Kelm RJ; Leier CV; Strauch AR Exp Biol Med (Maywood); 2012 May; 237(5):593-607. PubMed ID: 22619371 [TBL] [Abstract][Full Text] [Related]
29. LIM and cysteine-rich domains 1 regulates cardiac hypertrophy by targeting calcineurin/nuclear factor of activated T cells signaling. Bian ZY; Huang H; Jiang H; Shen DF; Yan L; Zhu LH; Wang L; Cao F; Liu C; Tang QZ; Li H Hypertension; 2010 Feb; 55(2):257-63. PubMed ID: 20026769 [TBL] [Abstract][Full Text] [Related]
30. The CRM1 nuclear export receptor controls pathological cardiac gene expression. Harrison BC; Roberts CR; Hood DB; Sweeney M; Gould JM; Bush EW; McKinsey TA Mol Cell Biol; 2004 Dec; 24(24):10636-49. PubMed ID: 15572669 [TBL] [Abstract][Full Text] [Related]
31. Structure and intramodular dynamics of the amino-terminal LIM domain from quail cysteine- and glycine-rich protein CRP2. Kontaxis G; Konrat R; Kräutler B; Weiskirchen R; Bister K Biochemistry; 1998 May; 37(20):7127-34. PubMed ID: 9585524 [TBL] [Abstract][Full Text] [Related]
32. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413 [TBL] [Abstract][Full Text] [Related]
33. Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin. van Tuyn J; Knaän-Shanzer S; van de Watering MJ; de Graaf M; van der Laarse A; Schalij MJ; van der Wall EE; de Vries AA; Atsma DE Cardiovasc Res; 2005 Aug; 67(2):245-55. PubMed ID: 15907818 [TBL] [Abstract][Full Text] [Related]
34. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Arber S; Halder G; Caroni P Cell; 1994 Oct; 79(2):221-31. PubMed ID: 7954791 [TBL] [Abstract][Full Text] [Related]
35. The cardiac syndecan-4 interactome reveals a role for syndecan-4 in nuclear translocation of muscle LIM protein (MLP). Mathiesen SB; Lunde M; Aronsen JM; Romaine A; Kaupang A; Martinsen M; de Souza GA; Nyman TA; Sjaastad I; Christensen G; Carlson CR J Biol Chem; 2019 May; 294(22):8717-8731. PubMed ID: 30967474 [TBL] [Abstract][Full Text] [Related]
36. Expression of the gene encoding the LIM protein CRP2: a developmental profile. Henderson JR; Brown D; Richardson JA; Olson EN; Beckerle MC J Histochem Cytochem; 2002 Jan; 50(1):107-11. PubMed ID: 11748300 [TBL] [Abstract][Full Text] [Related]
37. Significance of the p38MAPK-CRP2 axis in myofibroblastic phenotypic transition. Hayashi K; Labios RJ; Morita T; Ashimori A; Aoki R; Mikuni M; Kimura K Cell Struct Funct; 2023; 48(2):199-210. PubMed ID: 37899269 [TBL] [Abstract][Full Text] [Related]
38. Role of CRP2-MRTF interaction in functions of myofibroblasts. Hayashi K; Horoiwa S; Mori K; Miyata H; Labios RJ; Morita T; Kobayashi Y; Yamashiro C; Higashijima F; Yoshimoto T; Kimura K; Nakagawa Y Cell Struct Funct; 2023; 48(1):83-98. PubMed ID: 37164693 [TBL] [Abstract][Full Text] [Related]
39. The LIM protein, CRP1, is a smooth muscle marker. Henderson JR; Macalma T; Brown D; Richardson JA; Olson EN; Beckerle MC Dev Dyn; 1999 Mar; 214(3):229-38. PubMed ID: 10090149 [TBL] [Abstract][Full Text] [Related]
40. Actin cytoskeleton depolymerization increases matrix metalloproteinase gene expression in breast cancer cells by promoting translocation of cysteine-rich protein 2 to the nucleus. Mgrditchian T; Brown-Clay J; Hoffmann C; Müller T; Filali L; Ockfen E; Mao X; Moreau F; Casellas CP; Kaoma T; Mittelbronn M; Thomas C Front Cell Dev Biol; 2023; 11():1100938. PubMed ID: 37266453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]