These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 17185539)
21. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Wakai S; Kikumoto M; Kanao T; Kamimura K Biosci Biotechnol Biochem; 2004 Dec; 68(12):2519-28. PubMed ID: 15618623 [TBL] [Abstract][Full Text] [Related]
22. Complete Genome Sequence of Zhang Y; Zhang S; Zhao D; Ni Y; Wang W; Yan L Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31861345 [No Abstract] [Full Text] [Related]
23. The rus operon genes are differentially regulated when Acidithiobacillus ferrooxidans LR is kept in contact with metal sulfides. Carlos C; Reis FC; Vicentini R; Madureira DJ; Ottoboni LM Curr Microbiol; 2008 Oct; 57(4):375-80. PubMed ID: 18665419 [TBL] [Abstract][Full Text] [Related]
24. Insights into the pathways of iron- and sulfur-oxidation, and biofilm formation from the chemolithotrophic acidophile Acidithiobacillus ferrivorans CF27. Talla E; Hedrich S; Mangenot S; Ji B; Johnson DB; Barbe V; Bonnefoy V Res Microbiol; 2014 Nov; 165(9):753-60. PubMed ID: 25154051 [TBL] [Abstract][Full Text] [Related]
25. Use of Walnut Shell Powder to Inhibit Expression of Fe(2+)-Oxidizing Genes of Acidithiobacillus Ferrooxidans. Li Y; Liu Y; Tan H; Zhang Y; Yue M Int J Environ Res Public Health; 2016 Apr; 13(5):. PubMed ID: 27144574 [TBL] [Abstract][Full Text] [Related]
26. Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on Bonnefoy V; Grail BM; Johnson DB Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374029 [TBL] [Abstract][Full Text] [Related]
27. Anaerobic sulfur metabolism coupled to dissimilatory iron reduction in the extremophile Acidithiobacillus ferrooxidans. Osorio H; Mangold S; Denis Y; Ñancucheo I; Esparza M; Johnson DB; Bonnefoy V; Dopson M; Holmes DS Appl Environ Microbiol; 2013 Apr; 79(7):2172-81. PubMed ID: 23354702 [TBL] [Abstract][Full Text] [Related]
28. Genetic engineering of the acidophilic chemolithoautotroph Acidithiobacillus ferrooxidans. Jung H; Inaba Y; Banta S Trends Biotechnol; 2022 Jun; 40(6):677-692. PubMed ID: 34794837 [TBL] [Abstract][Full Text] [Related]
29. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Almárcegui RJ; Navarro CA; Paradela A; Albar JP; von Bernath D; Jerez CA Res Microbiol; 2014 Nov; 165(9):761-72. PubMed ID: 25041950 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS. Kucera J; Bouchal P; Cerna H; Potesil D; Janiczek O; Zdrahal Z; Mandl M Antonie Van Leeuwenhoek; 2012 Mar; 101(3):561-73. PubMed ID: 22057833 [TBL] [Abstract][Full Text] [Related]
31. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. Castelle C; Guiral M; Malarte G; Ledgham F; Leroy G; Brugna M; Giudici-Orticoni MT J Biol Chem; 2008 Sep; 283(38):25803-11. PubMed ID: 18632666 [TBL] [Abstract][Full Text] [Related]
32. Ferrous iron oxidation by sulfur-oxidizing Acidithiobacillus ferrooxidans and analysis of the process at the levels of transcription and protein synthesis. Kucera J; Bouchal P; Lochman J; Potesil D; Janiczek O; Zdrahal Z; Mandl M Antonie Van Leeuwenhoek; 2013 Apr; 103(4):905-19. PubMed ID: 23291738 [TBL] [Abstract][Full Text] [Related]
33. Acidithiobacillus ferrooxidans and its potential application. Zhang S; Yan L; Xing W; Chen P; Zhang Y; Wang W Extremophiles; 2018 Jul; 22(4):563-579. PubMed ID: 29696439 [TBL] [Abstract][Full Text] [Related]
34. Assembly of the Rieske iron-sulfur subunit of the cytochrome bc1 complex in the Escherichia coli and Rhodobacter sphaeroides membranes independent of the cytochrome b and c1 subunits. Van Doren SR; Yun CH; Crofts AR; Gennis RB Biochemistry; 1993 Jan; 32(2):628-36. PubMed ID: 8380704 [TBL] [Abstract][Full Text] [Related]
35. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Liljeqvist M; Rzhepishevska OI; Dopson M Appl Environ Microbiol; 2013 Feb; 79(3):951-7. PubMed ID: 23183980 [TBL] [Abstract][Full Text] [Related]
36. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates. Vera M; Pagliai F; Guiliani N; Jerez CA Appl Environ Microbiol; 2008 Mar; 74(6):1829-35. PubMed ID: 18203861 [TBL] [Abstract][Full Text] [Related]
37. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans. Chen Y; Suzuki I Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867 [TBL] [Abstract][Full Text] [Related]
38. A new cytoplasmic monoheme cytochrome c from Acidithiobacillus ferrooxidans involved in sulfur oxidation. Liu Y; Guo S; Yu R; Zou K; Qiu G Curr Microbiol; 2014 Mar; 68(3):285-92. PubMed ID: 24129838 [TBL] [Abstract][Full Text] [Related]
39. Influence of mobile genetic elements and insertion sequences in long- and short-term adaptive processes of Acidithiobacillus ferrooxidans strains. Moya-Beltrán A; Gajdosik M; Rojas-Villalobos C; Beard S; Mandl M; Silva-García D; Johnson DB; Ramirez P; Quatrini R; Kucera J Sci Rep; 2023 Jul; 13(1):10876. PubMed ID: 37407610 [TBL] [Abstract][Full Text] [Related]
40. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators. Hödar C; Moreno P; di Genova A; Latorre M; Reyes-Jara A; Maass A; González M; Cambiazo V Biometals; 2012 Feb; 25(1):75-93. PubMed ID: 21830017 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]