BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 17185777)

  • 1. Retention time prediction and protein identification.
    Palmblad M
    Methods Mol Biol; 2007; 367():195-207. PubMed ID: 17185777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retention time prediction and protein identification.
    Henneman AA; Palmblad M
    Methods Mol Biol; 2013; 1007():101-18. PubMed ID: 23666723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein identification by liquid chromatography-mass spectrometry using retention time prediction.
    Palmblad M; Ramström M; Bailey CG; McCutchen-Maloney SL; Bergquist J; Zeller LC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Apr; 803(1):131-5. PubMed ID: 15026006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention Time Prediction and Protein Identification.
    Henneman A; Palmblad M
    Methods Mol Biol; 2020; 2051():115-132. PubMed ID: 31552626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein identification assisted by the prediction of retention time in liquid chromatography/tandem mass spectrometry.
    Wang Y; Zhang J; Gu X; Zhang XM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Nov; 826(1-2):122-8. PubMed ID: 16159714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry.
    Ducret A; Van Oostveen I; Eng JK; Yates JR; Aebersold R
    Protein Sci; 1998 Mar; 7(3):706-19. PubMed ID: 9541403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins.
    Martosella J; Zolotarjova N; Liu H; Nicol G; Boyes BE
    J Proteome Res; 2005; 4(5):1522-37. PubMed ID: 16212403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid chromatography at critical conditions: comprehensive approach to sequence-dependent retention time prediction.
    Gorshkov AV; Tarasova IA; Evreinov VV; Savitski MM; Nielsen ML; Zubarev RA; Gorshkov MV
    Anal Chem; 2006 Nov; 78(22):7770-7. PubMed ID: 17105170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale identification and quantification of covalent modifications in therapeutic proteins.
    Zhang Z
    Anal Chem; 2009 Oct; 81(20):8354-64. PubMed ID: 19764700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry.
    Gatlin CL; Kleemann GR; Hays LG; Link AJ; Yates JR
    Anal Biochem; 1998 Oct; 263(1):93-101. PubMed ID: 9750149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence-specific predictive chromatography to assist mass spectrometric analysis of asparagine deamidation and aspartate isomerization in peptides.
    Sargaeva NP; Goloborodko AA; O'Connor PB; Moskovets E; Gorshkov MV
    Electrophoresis; 2011 Aug; 32(15):1962-9. PubMed ID: 21557257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput identification of proteins and unanticipated sequence modifications using a mass-based alignment algorithm for MS/MS de novo sequencing results.
    Searle BC; Dasari S; Turner M; Reddy AP; Choi D; Wilmarth PA; McCormack AL; David LL; Nagalla SR
    Anal Chem; 2004 Apr; 76(8):2220-30. PubMed ID: 15080731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatographic retention time prediction for posttranslationally modified peptides.
    Moruz L; Staes A; Foster JM; Hatzou M; Timmerman E; Martens L; Käll L
    Proteomics; 2012 Apr; 12(8):1151-9. PubMed ID: 22577017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS.
    Geromanos SJ; Vissers JP; Silva JC; Dorschel CA; Li GZ; Gorenstein MV; Bateman RH; Langridge JI
    Proteomics; 2009 Mar; 9(6):1683-95. PubMed ID: 19294628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of yeast oxidized proteins: chromatographic top-down approach for identification of carbonylated, fragmented and cross-linked proteins in yeast.
    Mirzaei H; Regnier F
    J Chromatogr A; 2007 Feb; 1141(1):22-31. PubMed ID: 17188699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MudPIT: multidimensional protein identification technology.
    Delahunty CM; Yates JR
    Biotechniques; 2007 Nov; 43(5):563, 565, 567 passim. PubMed ID: 18072585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid identification of comigrating gel-isolated proteins by ion trap-mass spectrometry.
    Arnott D; Henzel WJ; Stults JT
    Electrophoresis; 1998 May; 19(6):968-80. PubMed ID: 9638943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of proteins from non-model organisms using mass spectrometry: application to a hibernating mammal.
    Russeth KP; Higgins L; Andrews MT
    J Proteome Res; 2006 Apr; 5(4):829-39. PubMed ID: 16602690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mass spectrometry and the age of the proteome.
    Yates JR
    J Mass Spectrom; 1998 Jan; 33(1):1-19. PubMed ID: 9449829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome annotation of Anopheles gambiae using mass spectrometry-derived data.
    Kalume DE; Peri S; Reddy R; Zhong J; Okulate M; Kumar N; Pandey A
    BMC Genomics; 2005 Sep; 6():128. PubMed ID: 16171517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.