BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 17185808)

  • 1. Does altered blood flow to bone in microgravity impact on mechanotransduction?
    Bloomfield SA
    J Musculoskelet Neuronal Interact; 2006; 6(4):324-6. PubMed ID: 17185808
    [No Abstract]   [Full Text] [Related]  

  • 2. Bone tissue engineering: the role of interstitial fluid flow.
    Hillsley MV; Frangos JA
    Biotechnol Bioeng; 1994 Mar; 43(7):573-81. PubMed ID: 11540959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiovascular and hormonal (aldosterone) responses in a rat model which mimics responses to weightlessness.
    Musacchia XJ; Steffen JM
    Physiologist; 1984; 27(6 Suppl):S41-2. PubMed ID: 11539012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematological and blood viscosity changes in tail-suspended rats.
    Saunders DK; Roberts AC; Aldrich KJ; Cuthbertson B
    Aviat Space Environ Med; 2002 Jul; 73(7):647-53. PubMed ID: 12137100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in skeletal perfusion with simulated microgravity: a possible mechanism for bone remodeling.
    Colleran PN; Wilkerson MK; Bloomfield SA; Suva LJ; Turner RT; Delp MD
    J Appl Physiol (1985); 2000 Sep; 89(3):1046-54. PubMed ID: 10956349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones.
    Cowin SC; Gailani G; Benalla M
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3401-44. PubMed ID: 19657006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of microgravity on renal and femoral flows during LBNP & intravenous saline load.
    Arbeille P; Gaffney FA; Beck L; Coulon J; Porcher M; Blomqvist CG
    J Gravit Physiol; 1996 Sep; 3(2):91-2. PubMed ID: 11547384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microgravity and bone cell mechanosensitivity.
    Burger EH; Klein-Nulend J
    Bone; 1998 May; 22(5 Suppl):127S-130S. PubMed ID: 9600768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid shift versus body size: changes of hematological parameters and body fluid volume in hindlimb-unloaded mice, rats and rabbits.
    Andreev-Andrievskiy AA; Popova AS; Lagereva EA; Vinogradova OL
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29950449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concept of new tool to simulate human physiological reactions in microgravity.
    Kondrachuk AV; Gulyar SA
    J Gravit Physiol; 1995; 2(1):P109-10. PubMed ID: 11538886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Change of pulmonary circulation in microgravity and simulated microgravity].
    Sun L; Xiang QL; Wang DS; Ren W
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):305-9. PubMed ID: 11892754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dragging along: the glycocalyx and vascular endothelial cell mechanotransduction.
    Barakat AI
    Circ Res; 2008 Apr; 102(7):747-8. PubMed ID: 18403731
    [No Abstract]   [Full Text] [Related]  

  • 13. Physiological effects of microgravity on bone cells.
    Arfat Y; Xiao WZ; Iftikhar S; Zhao F; Li DJ; Sun YL; Zhang G; Shang P; Qian AR
    Calcif Tissue Int; 2014 Jun; 94(6):569-79. PubMed ID: 24687524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peripheral hemodynamic assessment during LBNP for the evaluation of the vascular deconditioning induced by a long term HDT.
    Arbeille P; Pavy le Traon A; Vasseur P; Guell A
    Physiologist; 1992 Feb; 35(1 Suppl):S202-3. PubMed ID: 1589504
    [No Abstract]   [Full Text] [Related]  

  • 15. Nanomechanics and bone tissue quality.
    Guo XE
    J Musculoskelet Neuronal Interact; 2008; 8(4):325-6. PubMed ID: 19147959
    [No Abstract]   [Full Text] [Related]  

  • 16. Blood flow restriction: rationale for improving bone.
    Loenneke JP; Young KC; Fahs CA; Rossow LM; Bemben DA; Bemben MG
    Med Hypotheses; 2012 Apr; 78(4):523-7. PubMed ID: 22305335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy expenditure and blood flows in thermoregulatory organs during microgravity simulation in rat. Emphasis on the importance of the control group.
    Blanc S; Normand S; Pachiaudi C; Gauquelin-Koch G; Gharib C; Somody L
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Mar; 131(3):683-95. PubMed ID: 11867294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norepinephrine kinetics in the rat with tail-suspension-induced central hypervolemia, as a model of cardio-vascular deconditioning.
    Maignan E; Martel E; Safar M; Cuche JL
    J Gravit Physiol; 2000 Jul; 7(2):P141-2. PubMed ID: 12697493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects on rats' bone mineral density and bone biomechanics by suspensory simulated weightlessness and removing suspension].
    Tong HY; Hu SM; Zhou P; Fu Q; Li J; Gao XM; Zhang JJ
    Zhongguo Gu Shang; 2008 Apr; 21(4):276-9. PubMed ID: 19102188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ECG voltage modifications as response to gravity changes.
    Saltykova M; Capderou A; Atkov O; Gusakov V; Baillart O; Konovalov G; Kataev Y; Voronin L; Kaspranskiy R; Morgun V; Vaida P
    J Gravit Physiol; 2004 Jul; 11(2):P87-8. PubMed ID: 16235427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.