These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 17185809)
1. A simulated weightlessness state diminishes cortical bone healing responses. Midura RJ; Su X; Androjna C J Musculoskelet Neuronal Interact; 2006; 6(4):327-8. PubMed ID: 17185809 [No Abstract] [Full Text] [Related]
2. [Biochemical control of callus maturation--an experimental animal study]. Schmidt J; Winker H; Schmidt I; Ekkernkamp A; Merk H Z Orthop Unfall; 2008; 146(4):490-7. PubMed ID: 18704847 [TBL] [Abstract][Full Text] [Related]
3. Differential bone turnover in an angulated fracture model in the rat. Li J; Ahmad T; Bergström J; Samnegård E; Erlandsson-Harris H; Ahmed M; Kreicbergs A Calcif Tissue Int; 2004 Jul; 75(1):50-9. PubMed ID: 15037974 [TBL] [Abstract][Full Text] [Related]
4. Are bone turnover markers capable of predicting callus consolidation during bone healing? Klein P; Bail HJ; Schell H; Michel R; Amthauer H; Bragulla H; Duda GN Calcif Tissue Int; 2004 Jul; 75(1):40-9. PubMed ID: 15148561 [TBL] [Abstract][Full Text] [Related]
8. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Andreykiv A; van Keulen F; Prendergast PJ Biomech Model Mechanobiol; 2008 Dec; 7(6):443-61. PubMed ID: 17972123 [TBL] [Abstract][Full Text] [Related]
9. A 3D computational simulation of fracture callus formation: influence of the stiffness of the external fixator. Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M J Biomech Eng; 2006 Jun; 128(3):290-9. PubMed ID: 16706578 [TBL] [Abstract][Full Text] [Related]
10. Predicting the external formation of callus tissues in oblique bone fractures: idealised and clinical case studies. Comiskey D; MacDonald BJ; McCartney WT; Synnott K; O'Byrne J Biomech Model Mechanobiol; 2013 Nov; 12(6):1277-82. PubMed ID: 23306603 [TBL] [Abstract][Full Text] [Related]
12. Site-specific CGRP innervation coincides with bone formation during fracture healing and modeling: A study in rat angulated tibia. Li J; Kreicbergs A; Bergström J; Stark A; Ahmed M J Orthop Res; 2007 Sep; 25(9):1204-12. PubMed ID: 17503519 [TBL] [Abstract][Full Text] [Related]
13. [Healing fibular bone fracture in rats during extended suspension ]. Durnova GN; Loginov VI; Kaplanskiĭ AS Aviakosm Ekolog Med; 2002; 36(3):52-5. PubMed ID: 12222073 [TBL] [Abstract][Full Text] [Related]
14. Can we accelerate fracture healing? A critical analysis of the literature. Giannoudis P; Psarakis S; Kontakis G Injury; 2007 Mar; 38 Suppl 1():S81-9. PubMed ID: 17383489 [TBL] [Abstract][Full Text] [Related]
15. Influence of fracture gap size on the pattern of long bone healing: a computational study. Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M J Theor Biol; 2005 Jul; 235(1):105-19. PubMed ID: 15833317 [TBL] [Abstract][Full Text] [Related]
16. Early controlled passive motion improves early fracture alignment and structural properties in a closed extra-articular metacarpal fracture in a rabbit model. Feehan LM; Tang CS; Oxland TR J Hand Surg Am; 2007 Feb; 32(2):200-8. PubMed ID: 17275595 [TBL] [Abstract][Full Text] [Related]
17. Tissue engineering approaches for bone repair: concepts and evidence. Schroeder JE; Mosheiff R Injury; 2011 Jun; 42(6):609-13. PubMed ID: 21489529 [TBL] [Abstract][Full Text] [Related]
18. Overview of the fracture healing cascade. Phillips AM Injury; 2005 Nov; 36 Suppl 3():S5-7. PubMed ID: 16188551 [TBL] [Abstract][Full Text] [Related]
19. The cell and molecular biology of fracture healing. Einhorn TA Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S7-21. PubMed ID: 9917622 [TBL] [Abstract][Full Text] [Related]
20. Shear does not necessarily inhibit bone healing. Bishop NE; van Rhijn M; Tami I; Corveleijn R; Schneider E; Ito K Clin Orthop Relat Res; 2006 Feb; 443():307-14. PubMed ID: 16462456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]