BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17186228)

  • 1. Size prediction of recombinant human growth hormone nanoparticles produced by supercritical fluid precipitation.
    Pyo D; Lim C; Cho D; Oh D
    Anal Bioanal Chem; 2007 Feb; 387(3):901-7. PubMed ID: 17186228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical fluids processing of recombinant human growth hormone.
    Velega SP; Carlfors J
    Drug Dev Ind Pharm; 2005 Jan; 31(2):135-49. PubMed ID: 15773281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical fluid processing of proteins: lysozyme precipitation from aqueous solution.
    Moshashaée S; Bisrat M; Forbes RT; Quinn EA; Nyqvist H; York P
    J Pharm Pharmacol; 2003 Feb; 55(2):185-92. PubMed ID: 12631410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.
    Sheth P; Sandhu H; Singhal D; Malick W; Shah N; Kislalioglu MS
    Curr Drug Deliv; 2012 May; 9(3):269-84. PubMed ID: 22283656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, characterization and in vivo assessment of the bioavailability of glycyrrhizic acid microparticles by supercritical anti-solvent process.
    Sui X; Wei W; Yang L; Zu Y; Zhao C; Zhang L; Yang F; Zhang Z
    Int J Pharm; 2012 Feb; 423(2):471-9. PubMed ID: 22183131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance.
    Palakodaty S; York P; Pritchard J
    Pharm Res; 1998 Dec; 15(12):1835-43. PubMed ID: 9892466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of budesonide/gamma-cyclodextrin complexes in supercritical fluids with a novel SEDS method.
    Toropainen T; Velaga S; Heikkilä T; Matilainen L; Jarho P; Carlfors J; Lehto VP; Järvinen T; Järvinen K
    J Pharm Sci; 2006 Oct; 95(10):2235-45. PubMed ID: 16883551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation.
    Pathak P; Prasad GL; Meziani MJ; Joudeh AA; Sun YP
    Langmuir; 2007 Feb; 23(5):2674-9. PubMed ID: 17243738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sub-micrometer-sized biodegradable particles of poly(L-lactic acid) via the gas antisolvent spray precipitation process.
    Randolph TW; Randolph AD; Mebes M; Yeung S
    Biotechnol Prog; 1993; 9(4):429-35. PubMed ID: 7763910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CO2 and fluorinated solvent-based technologies for protein microparticle precipitation from aqueous solutions.
    Sarkari M; Darrat I; Knutson BL
    Biotechnol Prog; 2003; 19(2):448-54. PubMed ID: 12675586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.
    Pessi J; Lassila I; Meriläinen A; Räikkönen H; Hæggström E; Yliruusi J
    J Pharm Sci; 2016 Aug; 105(8):2293-7. PubMed ID: 27368121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of human growth hormone in supercritical carbon dioxide.
    Kelly CA; Howdle SM; Naylor A; Coxhill G; Tye LC; Illum L; Lewis AL
    J Pharm Sci; 2012 Jan; 101(1):56-67. PubMed ID: 21905036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of micro-particles of proteins for aerosol delivery using high pressure modified carbon dioxide.
    Bustami RT; Chan HK; Dehghani F; Foster NR
    Pharm Res; 2000 Nov; 17(11):1360-6. PubMed ID: 11205728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.
    Padrela L; Rodrigues MA; Duarte A; Dias AMA; Braga MEM; de Sousa HC
    Adv Drug Deliv Rev; 2018 Jun; 131():22-78. PubMed ID: 30026127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions.
    Nesta DP; Elliott JS; Warr JP
    Biotechnol Bioeng; 2000 Feb; 67(4):457-64. PubMed ID: 10620761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of curcumin nanoparticles via solution-enhanced dispersion by supercritical CO2.
    Zhao Z; Xie M; Li Y; Chen A; Li G; Zhang J; Hu H; Wang X; Li S
    Int J Nanomedicine; 2015; 10():3171-81. PubMed ID: 25995627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.