These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 17186228)

  • 21. Supercritical ethanol--a fascinating dispersion medium for silica nanoparticles.
    Ghosh SK; Deguchi S; Mukai SA; Tsujii K
    J Phys Chem B; 2007 Jul; 111(28):8169-74. PubMed ID: 17585799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanosizing drug particles in supercritical fluid processing.
    Pathak P; Meziani MJ; Desai T; Sun YP
    J Am Chem Soc; 2004 Sep; 126(35):10842-3. PubMed ID: 15339159
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation and enhanced biocidal activity of water-dispersable organic nanoparticles.
    Zhang H; Wang D; Butler R; Campbell NL; Long J; Tan B; Duncalf DJ; Foster AJ; Hopkinson A; Taylor D; Angus D; Cooper AI; Rannard SP
    Nat Nanotechnol; 2008 Aug; 3(8):506-11. PubMed ID: 18685640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solubility and precipitation of nicotinic acid in supercritical carbon dioxide.
    Rehman M; Shekunov BY; York P; Colthorpe P
    J Pharm Sci; 2001 Oct; 90(10):1570-82. PubMed ID: 11745715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics.
    Pasquali I; Bettini R; Giordano F
    Eur J Pharm Sci; 2006 Mar; 27(4):299-310. PubMed ID: 16388936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle design of poorly water-soluble drug substances using supercritical fluid technologies.
    Yasuji T; Takeuchi H; Kawashima Y
    Adv Drug Deliv Rev; 2008 Feb; 60(3):388-98. PubMed ID: 18068261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A nanosystem for water-insoluble drugs prepared by a new technology, nanoparticulation using a solid lipid and supercritical fluid.
    Park JW; Yun JM; Lee ES; Youn YS; Kim KS; Oh YT; Oh KT
    Arch Pharm Res; 2013 Nov; 36(11):1369-76. PubMed ID: 23780798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.
    Xia D; Gan Y; Cui F
    Curr Pharm Des; 2014; 20(3):408-35. PubMed ID: 23651396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid.
    Manosroi A; Chutoprapat R; Abe M; Manosroi J
    Int J Pharm; 2008 Mar; 352(1-2):248-55. PubMed ID: 18036754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling drug nanoparticle formation by rapid precipitation.
    D'Addio SM; Prud'homme RK
    Adv Drug Deliv Rev; 2011 May; 63(6):417-26. PubMed ID: 21565233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of critical process variables affecting particle size following precipitation using a supercritical fluid.
    Sacha GA; Schmitt WJ; Nail SL
    Pharm Dev Technol; 2006; 11(2):187-94. PubMed ID: 16749529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts.
    Porta GD; Campardelli R; Falco N; Reverchon E
    J Pharm Sci; 2011 Oct; 100(10):4357-67. PubMed ID: 21638283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of methionine oxidation on the aggregation of recombinant human growth hormone.
    Mulinacci F; Poirier E; Capelle MA; Gurny R; Arvinte T
    Eur J Pharm Biopharm; 2013 Sep; 85(1):42-52. PubMed ID: 23958317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of cefpodoxime proxetil fine particles using supercritical fluids.
    Chu J; Li G; Row KH; Kim H; Lee YW
    Int J Pharm; 2009 Mar; 369(1-2):85-91. PubMed ID: 19041383
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives.
    Kumar R; Thakur AK; Kali G; Pitchaiah KC; Arya RK; Kulabhi A
    Drug Deliv Transl Res; 2023 Apr; 13(4):946-965. PubMed ID: 36575354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.
    Hammond RB; Pencheva K; Roberts KJ; Auffret T
    J Pharm Sci; 2007 Aug; 96(8):1967-73. PubMed ID: 17323349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.
    Zhao X; Wang W; Zu Y; Zhang Y; Li Y; Sun W; Shan C; Ge Y
    Drug Deliv; 2014 Sep; 21(6):467-79. PubMed ID: 24479653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.