These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 17186376)

  • 1. How we learnt about iron acquisition in Pseudomonas aeruginosa: a series of very fortunate events.
    Vasil ML
    Biometals; 2007 Jun; 20(3-4):587-601. PubMed ID: 17186376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron uptake regulation in Pseudomonas aeruginosa.
    Cornelis P; Matthijs S; Van Oeffelen L
    Biometals; 2009 Feb; 22(1):15-22. PubMed ID: 19130263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa.
    Imperi F; Tiburzi F; Fimia GM; Visca P
    Environ Microbiol; 2010 Jun; 12(6):1630-42. PubMed ID: 20370820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli.
    Massé E; Gottesman S
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4620-5. PubMed ID: 11917098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis.
    Wilderman PJ; Sowa NA; FitzGerald DJ; FitzGerald PC; Gottesman S; Ochsner UA; Vasil ML
    Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9792-7. PubMed ID: 15210934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937.
    Franza T; Michaud-Soret I; Piquerel P; Expert D
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1181-91. PubMed ID: 12423024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a fur titration assay.
    Stojiljkovic I; Bäumler AJ; Hantke K
    J Mol Biol; 1994 Feb; 236(2):531-45. PubMed ID: 8107138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron regulation and pathogenicity in Erwinia chrysanthemi 3937: role of the Fur repressor protein.
    Franza T; Sauvage C; Expert D
    Mol Plant Microbe Interact; 1999 Feb; 12(2):119-28. PubMed ID: 9926414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels.
    Hassett DJ; Howell ML; Ochsner UA; Vasil ML; Johnson Z; Dean GE
    J Bacteriol; 1997 Mar; 179(5):1452-9. PubMed ID: 9045799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the gene PA2384 in large-scale gene regulation in response to iron starvation in Pseudomonas aeruginosa.
    Zheng P; Sun J; Geffers R; Zeng AP
    J Biotechnol; 2007 Dec; 132(4):342-52. PubMed ID: 17889392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa.
    Pasqua M; Visaggio D; Lo Sciuto A; Genah S; Banin E; Visca P; Imperi F
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Vibrio alginolyticusfur gene and localization of essential amino acid sites in fur by site-directed mutagenesis.
    Liu Q; Wang P; Ma Y; Zhang Y
    J Mol Microbiol Biotechnol; 2007; 13(1-3):15-21. PubMed ID: 17693709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Members of the Fur protein family regulate iron and zinc transport in E. coli and characteristics of the Fur-regulated fhuF protein.
    Hantke K
    J Mol Microbiol Biotechnol; 2002 May; 4(3):217-22. PubMed ID: 11931550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a Dichelobacter nodosus ferric uptake regulator and determination of its regulatory targets.
    Parker D; Kennan RM; Myers GS; Paulsen IT; Rood JI
    J Bacteriol; 2005 Jan; 187(1):366-75. PubMed ID: 15601721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence.
    Vasil ML; Ochsner UA
    Mol Microbiol; 1999 Nov; 34(3):399-413. PubMed ID: 10564483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prrF-encoded small regulatory RNAs are required for iron homeostasis and virulence of Pseudomonas aeruginosa.
    Reinhart AA; Powell DA; Nguyen AT; O'Neill M; Djapgne L; Wilks A; Ernst RK; Oglesby-Sherrouse AG
    Infect Immun; 2015 Mar; 83(3):863-75. PubMed ID: 25510881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional specialization within the Fur family of metalloregulators.
    Lee JW; Helmann JD
    Biometals; 2007 Jun; 20(3-4):485-99. PubMed ID: 17216355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments.
    Barton HA; Johnson Z; Cox CD; Vasil AI; Vasil ML
    Mol Microbiol; 1996 Sep; 21(5):1001-17. PubMed ID: 8885270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different roles for anti-sigma factors in siderophore signalling pathways of Pseudomonas aeruginosa.
    Mettrick KA; Lamont IL
    Mol Microbiol; 2009 Dec; 74(5):1257-71. PubMed ID: 19889096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated activities of two alternative sigma factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa.
    Edgar RJ; Hampton GE; Garcia GPC; Maher MJ; Perugini MA; Ackerley DF; Lamont IL
    Mol Microbiol; 2017 Dec; 106(6):891-904. PubMed ID: 28971540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.